Home
Class 12
MATHS
Q. Let n be an odd integer if sin ntheta...

Q. Let n be an odd integer if `sin ntheta=sum_(r=0)^n(b_r)sin^rtheta`, for every value of theta then `b_0 and b_1`---

A

`b_(0) = 1, b_(1) =3`

B

`b_(0) = 0, b_(1) `

C

`b_(0) = - 1 , b_(1) =n `

D

`b_(0) =0, b_(1) = n^(2) - 3n +3`

Text Solution

Verified by Experts

The correct Answer is:
B

Given, `sin n theta = underset(r=0)overset(n)sum b_(r) sin^(r) theta`
Now put, `theta = 0`, we get `0 =b_(0)`
`therefore sin ntheta =underset(r=1)overset(n) b_(r) sin^(r) theta`
`rArr (sin n theta)/(sin theta) = underset(r=1)overset(n) sum b_(r) (sin theta)^(r-1)`
Taking limit as ` theta to0`
`rArr underset( theta to 0)(lim) (sin ntheta)/(sin theta) = underset(theta to 0)(lim) underset(r=1)overset(n)sum b_(r) (sin theta)^(n-1)`
`rArr underset(theta to 0)(lim) (n theta.(sin ntheta)/(n theta))/(theta.(sintheta)/(theta)) = b_(1) + 0 + 0 + 0.....`
[`because` other values become zero for higher power of sin `theta`]
`rArr " "(n.1)/(1) =b_(1)`
`rArr " "b_(1) = n`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum sum_(r=0)^n^(n+r)C_r .

The value of sum_(r=0)^n(a+r+a r)(-a)^r is equal to

sin^2 n theta- sin^2 (n-1)theta= sin^2 theta where n is constant and n != 0,1

If theta in (pi//4, pi//2) and sum_(n=1)^(oo)(1)/(tan^(n)theta)=sin theta + cos theta , then the value of tan theta is

Statement1: if n in Na n dn is not a multiple of 3 and (1+x+x^2)^n=sum_(r=0)^(2n)a_r x^r , then the value of sum_(r=0)^n(-1)^r a r^n C_r is zero Statement 2: The coefficient of x^n in the expansion of (1-x^3)^n is zero, if n=3k+1orn=3k+2.

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of

If x = sum_(n = 0)^(infty) cos ^(2n) theta, " "y = sum_(n = 0)^(infty) sin^(2n) theta and z = sum_(n = 0)^(infty) cos^(2n) theta sin^(2n)theta, 0 lt theta lt (pi)/(2) , then show that xyz = x + y + z [ Hint : use the formula 1 + x + x^(2) + x^(3) +... =(1)/(1 - x) , where |x| lt 1 ]

Let A={:[( 1,sin theta , 1),( -sin theta , 1, sin theta ),( -1 ,-sin theta , 1 )]:} ,"where" 0 letheta le 2pi , Then

If the sum of the series sum_(n=0)^oor^n ,|r|<1 is s , then find the sum of the series sum_(n=0)^oor^(2n) .