Home
Class 12
MATHS
The value of theta lying between theta=0...

The value of `theta` lying between `theta=0a n dtheta=pi/2` and satisfying the equation `|1+sin^2thetacos^2theta4sin4thetasin^2theta1+cos^2theta4sin4thetasin^2thetacos^2theta1+4sin4theta|=0a r e` `(7pi)/(24)` (b) `(5pi)/(24)` (c) `(11pi)/(24)` (d) `pi/(24)`

A

`7pi//24`

B

`5pi//24`

C

`11pi//24`

D

`pi//24`

Text Solution

Verified by Experts

The correct Answer is:
A, C

Given, `|{:(,1+sin^(2)theta,cos^(2) theta,4sin4 theta),(,sin^(2)theta,1+cos^(2)theta,4sin4theta),(,sin^(2)theta,cos^(2)theta,1+4sin 4theta):}|=0`
Applying `R_(3) to R_(3) - R_(1) and R_(2) to R_(2)-R_(1)` we get
`|{:(,1+sin^(2)theta, cos^(2)theta, 4sin4theta),(,-1,1,0),(,-1,0,1):}|=0`
Applying `C_(1) to C_(1) +C_(2)` we get
`|{:(,2,cos^(2)theta,4sin4theta),(,0,1,0),(,-1,0,1):}|=0`
`rArr 2+4sin 4 theta =0`
`rArr sin 4theta=(1)/(2)`
`rArr 4 theta = npi + ( -1)^(n)(-(pi)/(6))`
`rArr theta = (npi)/(4) + (-1)^(n+1)((pi)/(24))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: sin^(8)theta-cos^(8)theta=(sin^(2)theta-cos^(2)theta)(1-2sin^(2)thetacos^(2)theta)

Prove that sin^(6)theta+cos^(6)theta+3sin^(2)thetacos^(2)theta=1

There exists a value of theta between 0 and 2pi that satisfies the equation sin^4theta-2sin^2theta-1=0

Prove that cos^(3)thetasin3theta+sin^(3)theta cos 3theta=(3)/(4)sin 4 theta .

Solve 7cos^2theta+3sin^2theta=4

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

The number of values of theta in the interval (-pi/2,pi/2) satisfying the equation (sqrt(3))^(sec^2theta)=tan^4theta+2tan^2theta is

Prove that sin^(4) theta + cos^(4) theta = 1 - 2 sin^2 theta cos^(2) theta

Prove: sin^4 theta - cos^4theta = 1 - 2cos^2 theta