Home
Class 12
MATHS
The number of distinct solution of the e...

The number of distinct solution of the equation `5/4 cos^(2) 2x + cos^(4)x+sin^(4) x+cos^(6)x+sin^(6) x=2` in the interval `[0, 2pi]` is _______.

Text Solution

Verified by Experts

The correct Answer is:
-8

Here, `(5)/(4) cos^(2)2x + (cos^(4)x +sin^(4)x) + (cos^(6)x + sin^(6)x) =2`
`rArr (5)/(4) cot2x +[(cos^(2)x + sin^(2) x)^(2) -2sin^(2) x cos^(2)x]+(cos ^(2)x + sin^(2)x) [(cos^(2)x + sin^(2)x)^(2)-3sin^(2) cos^(2) x]=2`
`rArr (5)/(4)cos^(2)x + (1-2sin^(2)x cos^(2)x) + (1-3cos^(2) xsin^(2)x)=2`
`rArr (5)/(4)cos^(2)2x-5sin^(2)x cos^(2)x = 0`
`rArr (5)/(4)cos^(2)2x-(5)/(4) sin^(2)2x=0`
`rArr (5)/(2)cos^(2)2x = (5)/(4)rArr cos^(2) 2x= (1)/(2)`
`rArr 2cos^(2)2x =1`
`rArr 1+ cos 4x =1`
`rArr cos 4x =0 as 0 le x le 2pi`
`therefore 4x={(pi)/(2),(3pi)/(8),(5pi)/(2),(7pi)/(2),(9pi)/(2),(11pi)/(2),(13pi)/(2),(15pi)/(2)}`
as ` 0 le 4x le 8 pi`
`rArr x = {(pi)/(8),(3pi)/(8),(5pi)/(8),(9pi)/(8),(11pi)/(8),(13pi)/(8),(15pi)/(8)}`
Hence ,the total number of solutions is 8.
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of distinct solutions of the equation 5/4cos^(2)2x + cos^4 x + sin^4 x+cos^6x+sin^6 x =2 in the interval [0,2pi] is

The number of distinct real roots of the equation sin pi x=x^(2)-x+(5)/(4) is

cos ^(2) 2x -cos ^(2) 6x = sin 4x sin 8x

The number of solution of the equation |sin x|=|cos 3x| in [-2pi,2pi] is

Number of solutions of equation 2"sin" x/2 cos^(2) x-2 "sin" x/2 sin^(2) x=cos^(2) x-sin^(2) x for x in [0, 4pi] is

The total number of solution of the equation sin^4 x +cos^4 x = sin x cos x in [0,2pi] is :

The number of solutions of the equation 16(sin^(5)x +cos^(5)x)=11(sin x + cos x) in the interval [0,2pi] is

The number of solution of the equation |cos x|=cos x-2 sin x "in"[0,6 pi] is

The general solution of the equation 8 cos x cos 2x cos 4x = sin 6x//sin x is

The number of solutions of the equation cos^(-1)((1+x^2)/(2x))-cos^(-1)x=pi/2+sin^(-1)x is 0 (b) 1 (c) 2 (d) 3