Home
Class 12
MATHS
Find the values of theta in the interval...

Find the values of `theta` in the interval `(-pi/2,pi/2)` satisfying the equation `(1-tantheta)(1+tantheta)sec^2theta+2^tan^(2theta)=0`

Text Solution

Verified by Experts

The correct Answer is:
`theta = pm pi //3`

Given, ` ( 1 - tan theta ) (1 + tan theta ) sec ^(2) theta + 2 ^(tan ^(2) theta ) = 0`
` rArr (1 - tan ^(2) theta ) * ( 1 + tan ^(2) theta ) + 2 ^(tan ^(2) theta ) = 0 `
` rArr 1- tan ^(4) theta + 2 ^(tan ^(2) theta = 0 `
Put ` " " tan ^(2) theta = x `
` therefore " " 1- x ^(2) + 2 ^(x) = 0 `
`rArr" " x ^(2) - 1 = 2 ^(x)`.
Note ` 2^(x) and x ^(2) - 1 ` are uncompatible functions, therefore we have to consider range to both functions.
Curve ` y = x ^(2)- 1 and y = 2 ^(x)`

It is clear from the graph that two curves intersect at one point at ` x = 3, y = 8`.
Therefore, ` tan ^(2) theta = 3`.
` rArr " " tan theta = pm sqrt3`.
` rArr" " theta = pm (pi)/(3)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of values of theta in the interval (-pi/2,pi/2) satisfying the equation (sqrt(3))^(sec^2theta)=tan^4theta+2tan^2theta is

Find the value of theta if tantheta=0.0720

tantheta=? tan(90-theta)=?

If tantheta=1 , then tan(90- theta )=?

Prove that: 1/(sectheta - tantheta) = sectheta + tan theta

The number of values of theta in the interval [-pi/2,pi/2] and theta!=(npi)/5 is where n=0,+-1,+-2 and tantheta=cot(5theta) and sin(2theta)=cos(4theta) is

The value of theta lying between theta=0a n dtheta=pi/2 and satisfying the equation |1+sin^2thetacos^2theta4sin4thetasin^2theta1+cos^2theta4sin4thetasin^2thetacos^2theta1+4sin4theta|=0a r e (7pi)/(24) (b) (5pi)/(24) (c) (11pi)/(24) (d) pi/(24)

tanthetacosec^(2)theta-tantheta is equal to

tanthetacosec^(2)theta-tantheta is equal to