Home
Class 12
MATHS
Let (-2-(1)/(3)i)^(3) = (x+iy)/(27) (i=s...

Let `(-2-(1)/(3)i)^(3) = (x+iy)/(27) (i=sqrt(-1))`, where x and y are real numbers. Then y - x equals

Text Solution

Verified by Experts

The correct Answer is:
B

We have `(x+iy)/(27)(-2 - 1/3 i)^3=[-1/3 (6+i)]^3`
`rArr (x+iy)/(27)=-1/27(216+108 i+ 18 i^2+i^3)`
`=-1/27(198+107 i)`
`[ therefore (a+b)^3=a^3+b^3+3a^2b + 3ab^2,i^2=-1,i^3=-1]`
On equating real and imaginary part , we get
`x=- 198 and y = - 107`
`rArr y-x= -107 + 198 = 91 `
Promotional Banner

Similar Questions

Explore conceptually related problems

Let z=x+i y be a complex number, where xa n dy are real numbers. Let Aa n dB be the sets defined by A={z :|z|lt=2}a n dB={z :(1-i)z+(1+i)bar z geq4} . Find the area of region AnnB

"F i n d"(dy)/(dx)"if"y=tan^(-1)((sqrt(1+x^2)-1)/x), where x!=0

Let f(x)=x^2-2x-1 AA x in R Let f:(-oo, a]->[b, oo) , where a is the largest real number for which f(x) is bijective. If f : R->R , g(x) = f(x) + 3x-1 , then the least value of function y = g(|x|) is

If ((1 + i)/(1 - i))^(3) - ((1 - i)/(1 + i))^(3) = x + iy then (x, y) = …….

If x + iy = (3 + 5i)/(7-6i), they y =

Let tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2)) , where |x|<1/(sqrt(3)) . Then a value of y is : (1) (3x-x^3)/(1-3x^2) (2) (3x+x^3)/(1-3x^2) (3) (3x-x^3)/(1+3x^2) (4) (3x+x^3)/(1+3x^2)

Solve 5x-3 lt 3x+1 when (i) x is an integer (ii) x is a real number.

if A=[[i,0] , [0,i]] where i=sqrt(-1) and x epsilon N then A^(4x) equals to:

Let sqrt(((x+1)(x-3))/((x-2))) . Find all the real values of x for which y takes real values.