Home
Class 12
MATHS
Let A = {0 in (-(pi)/(2), pi):(3 + 2...

Let
`A = {0 in (-(pi)/(2), pi):(3 + 2i sin theta)/(1 - 2i sin theta)" is purely imaginary"}`
Then the sum of the elements in A is

A

`(3pi)/(4)`

B

`(5 pi)/(6)`

C

`pi`

D

`(2 pi )/(3)`

Text Solution

Verified by Experts

The correct Answer is:
A

Let `z=((3+2i sin theta)/(1-2i sin theta))xx((1+2 I sin theta)/(1+2 I sin theta))`
(reationaliisng the denomunator)
`=(3-4 sin ^2 theta + 8 I sin theta)/(1+ 4 sin ^2 theta)i`
As z is purely imaginary , so real part of z=0
`therefore (3- 4 sin ^2 theta )/(1+ 4 sin ^2 theta )=0 rArr 3 - 4 sin^2 thet=0 `
`rArr sin^2 theta = 3/4 rArr sin theta = pm (sqrt(3))/(2)`

`rArr theta ne {-(pi)/3,(pi)/3,(2 pi)/3}`
Sum of values of `theta = (2 pi) /3`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let A={theta in (-pi /2,pi):(3+2i sin theta )/(1-2 sin theta ) is purely imaginary } Then the sum of the elements in A is

Prove that sin (pi + theta) = - sin theta

Find real x such that (3+2i sin x)/(1-2i sin x) is purely real.

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

Evaluate int_(0)^((pi)/(2))(cos theta d theta)/((sin theta +2)(sin theta +3)) .

If pi/2 lt theta lt 3 pi/2 then sqrt( (1-sin theta)/(1+ sin theta )) - tan theta is

Simplify ((1 + cos 2 theta + i sin 2 theta)/(1 + cos 2 theta - i sin 2 theta))^(30)