Home
Class 12
MATHS
The value of s u msum(n=1)^(13)(i^n+i^(...

The value of `s u msum_(n=1)^(13)(i^n+i^(n+1)),"w h e r e"i=sqrt(-1)"e q u a l s"` `i` (b) `i-1` (c) `-i` (d) `0`

A

i

B

i-1

C

`-i`

D

0

Text Solution

Verified by Experts

The correct Answer is:
D

`underset(n=1)overset(13)Sigma(i^n+i^(n+1))=underset(n=1)overset(13)Sigmai^n(1+i)=(1+i)underset(n=1)overset(13)Sigma i^n`
`=(1+i)(i+i^2+i^3.....+i^(13))=(1+i)[(i-(1-i^(13)))/(1-i)] `
`=(l+i)[(i(1-i))/(1-i)]=(1+i)=i-1`
Alternate Solution
Since sum of any four comsecutive powers fo iota is zero
` therefore underset(n=1) overset(13)Sigma (i^n+i^(n+1)+....+i^(13))`
`+(i^2+i^3 +.....+i^(14))=i+i^2=i-1`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(i=1)^(13) (n^(n) + i^(n-1)) is

The value of sum_(n=1)^(13) (i^n+i^(n+1)) , where i =sqrt(-1) equals (A) i (B) i-1 (C) -i (D) 0

The value of sum_(n=0)^(100)i^(n!) equals (where i=sqrt(-1))

The value of sum_(k=0)^(n)(i^(k)+i^(k+1)) , where i^(2)= -1 , is equal to

Find the sum sum_(i=0)^r.^(n_1)C_(r-i) .^(n_2)C_i .

IfI_n=int_0^pie^x(sin"x")^("n")dx ,t h e n(I_3)/(I_1)"is equal to" 3/5 (b) 1/5 (c) 1 (d) 2/5

i^(n) + i^(n+1) + i^(n + 2) + i^(n + 3)

("lim")_(xvec1)[cos e c(pix)/2]^(1/((1-x)))(w h e r e[dot]r e p r e s e n t st h e gif is e q u a l to (a) 0 (b) 1 (c) oo (d) does not exist