Home
Class 12
MATHS
The complex number sinx+icos2x and cosx-...

The complex number `sinx+icos2x` and `cosx-isin2x` are conjugate to each other when

A

`x=npi`

B

x=0

C

`x=(n+1/2)pi`

D

no value of x

Text Solution

Verified by Experts

The correct Answer is:
D

Since (sin x+ I cos2 x )=cos x - I sin 2x
`rArr ` sin x- icos 2x =cos x -I sin 2x
`rArr` sin x= cos x and cos 2 x = sin 2x
`rArr ` tan x=1 and tan 2x=1
`rArr x=pi//4 and pi//8 ` which is not possible at same time .
Hence no solution exists.
Promotional Banner

Similar Questions

Explore conceptually related problems

For what values of x and y the numbers -3+ix^(2)y and x^(2)+y+4i and complex conjugate to each other.

Find int(cos2x)/((cosx+sinx)^(2))dx .

The number of solution of 2cosx=|sinx| where x in [0.4pi] is/are

The number of solutions of [sinx+cosx]=3+[-sinx]+[-cosx](w h e r e[] denotes the greatest integer function), x in [0,2pi] , is 0 (b) 4 (c) infinite (d) 1

Evaluate int(3sinx+2cosx)/(3cosx+2sinx)dx.

prove that [2(sin^3 x - cos^3 x )/(sinx -cosx)]-sin2x=2

Solve |sinx +cos x |=|sinx|+|cosx|, x in [0,2pi] .

The conjugate of a complex number is (1)/(i-2) . Then, the complex number is

Prove that sinx +sin2x +sin3x =sin2x (1+2cosx) .