Home
Class 12
MATHS
Let z = ((sqrt(3))/(2) + (i)/(2))^(5)+((...

Let `z = ((sqrt(3))/(2) + (i)/(2))^(5)+((sqrt(3))/(2)-(i)/(2))^(5)`. If R(z) and I(z), respectively, denote the real and imaginary parts of z, then

A

`Re(z) =0`

B

`Im ( z) =0`

C

`Re(z) gt 0 ,Im(z) gt 0 `

D

`Re(z) gt 0,Im (z) lt 0`

Text Solution

Verified by Experts

The correct Answer is:
B

Given `z=(sqrt(3)/2+i/2)^5+(sqrt(3)/2-i/2)^5`
`[because omega=(-1+isqrt(3))/(2) and omega^2=(-1-isqrt(3))/(2)]`
Now , `sqrt(3+i)/2=-i((-1+isqrt(3))/2)=-iomega`
and `(sqrt(3)-1)/2=((-1-isqrt(3))/2)=i omega^2`
`therefore z=(-iomega)^5+(iomega^2)^5=iw^2+iw`
`=i(omega-omega^2)=i(isqrt(3))=-sqrt(3)`
`rArr Re(z) lt 0 andlm (z)=0`
Alternate Solution
We know that `z+bar z =2 Re (z)`
If ` z=(sqrt(3)/2+i/2)^5 +(sqrt(3)/2-i/2)^5` then z is purely real ,i,e Im (z)=0
Promotional Banner

Similar Questions

Explore conceptually related problems

If z = ((sqrt(3))/(2) + (i)/(2))^(107) + ((sqrt(3))/(2)-(i)/(2))^(107) , then show that Im (z) = 0

If z=(sqrt(3)/2+i/2)^5+(sqrt(3)/2-i/2)^5 , then prove that Im(z)=0

If z = ((sqrt(3) + i)^(3) (3i+4)^(2))/((8 + 6i)^(2)) , then |z| is equal to

If z = (1)/((2 + 3i)^(2)) then |z| =

If z=((sqrt(3)+i)^(3)(3i+ 4)^(2))/((8+6i)^(2)) , then |z| is equal to

The complex number, z=((-sqrt(3)+3i)(1-i))/((3+sqrt(3)i)(i)(sqrt(3)+sqrt(3)i))

If z_(1)= 2sqrt(2)(1+i)" and "z_(2)=1+isqrt(3) , then z_(1)^(2)z_(2)^(3) is equal to

If z=(-1)/(2)+i(sqrt(3))/(2), " then "8+10z+7z^(2) is equal to