Home
Class 12
MATHS
Let za n domega be two complex numbers s...

Let `za n domega` be two complex numbers such that `|z|lt=1,|omega|lt=1a n d|z-iomega|=|z-i omega|=2,t h e nz` equals `1ori` b. `ior-i` c. `1or-1` d. `ior-1`

A

1 or I

B

I or -I

C

1 or -1

D

I or -1

Text Solution

Verified by Experts

The correct Answer is:
C

Given `|z+I w|=|z-ibarw|=2`
`rArr |z-(-iw)|=|z-(bar iw)|=2`
`rArr |z-(-iw)|=|z-(-ibarW)|`
`therefore` z lies on the perpendicular bisector of the line joininig -iw and - `Ibarw ."since " - bar w` and y=0
Now `|z| le 1 rArr x^2 +0^2 le 1 rArr -1 le x le 1`
`therefore` z may take values given in opton ( C)
Alteranate Solution
|z+ iw | le |z| + |iw | = |z| + |w|
`le 1+1 =2`
`therefore |z+i w | le 2 `
`rArr` |z+iw|= 2 holds when
argz- arg i w =0
`rArr arg z-arg i w =0 `
` rArr arg z/(iw)=0`
` z/(iw) ` is purely real.
`rArr z/w ` is purely imaginary
Similarly when `|z-i bar w|=2 "then " z/w` is purely imaginary
Now , given relation`|z+iw|=|z-barw|=2`
Put w=i ,we get
`|z+ i^2|=|z+i^2|=2`
`rArr |z+1|=2 rArr z=1 [therefore |z| le 1]`
`therefore ` z=1 or -1 is the correct option.
Promotional Banner

Similar Questions

Explore conceptually related problems

Let z and omega be two complex numbers such that |z|lt=1,|omega|lt=1 and |z-iomega|=|z-i bar omega|=2, then z equals (a) 1ori (b). ior-i (c). 1or-1 (d). ior-1

If z and omega are two non-zero complex numbers such that |z omega|=1" and "arg(z)-arg(omega)=(pi)/(2) , then bar(z)omega is equal to

Let za n dw be two nonzero complex numbers such that |z|=|w|a n d arg(z)+a r g(w)=pidot Then prove that z=- bar w dot

If z_1a n dz_2 are two complex numbers such that |z_1|=|z_2|a n d arg(z_1)+a r g(z_2)=pi , then show that z_1,=-( barz )_2dot

Let z_(1)" and "z_(2) be two complex numbers such that z_(1)z_(2)" and "z_(1)+z_(2) are real then

If z_(1)" and "z_(2) are two complex numbers such that |(z_(1)-z_(2))/(z_(1)+z_(2))|=1 then

Let omega be a complex number such that 2omega+1=z where z=sqrt(-3.) If|1 1 1 1-omega^2-1omega^2 1omega^2omega^7|=3k , then k is equal to : -1 (2) 1 (3) -z (4) z

Let z ne 1 be a complex number and let omeg= x+iy, y ne 0 . If (omega- bar(omega)z)/(1-z) is purely real, then |z| is equal to

If z_1a n dz_2 are two nonzero complex numbers such that = |z_1+z_2|=|z_1|+|z_2|, then a rgz_1-a r g z_2 is equal to -pi b. pi/2 c. 0 d. pi/2 e. pi

It z_(1) and z_(2) are two complex numbers, such that |z_(1)| = |z_(2)| , then is it necessary that z_(1) = z_(2) ?