Home
Class 12
MATHS
Let z = ((sqrt(3))/(2) + (i)/(2))^(5)+((...

Let `z = ((sqrt(3))/(2) + (i)/(2))^(5)+((sqrt(3))/(2)-(i)/(2))^(5)`. If R(z) and I(z), respectively, denote the real and imaginary parts of z, then

A

`R(z) gt 0 and I(z) gt 0`

B

`I(z)=0`

C

`R(z) lt 0 and I(z) gt 0`

D

`R(z)-3`

Text Solution

Verified by Experts

The correct Answer is:
B

Given `z= (sqrt(3)/2+ i/ 2)^5+(sqrt(3)/2-i/2)^5`
`because ` Euler's form of
`(sqrt(3)/2+i/2=( cos""pi/6+ I sin pi/6 ) = e^i(pi//6)`
`sqrt(3)/2- i/2= cos ((-pi )/(6)+isin ""pi/6)=e^(i(pi//6))`
So, `z= (e^(i pi//6))^5+(e^(-ipi//6))^5=e^(i(5pi)/6)+e^(-i(5pi)/6)`
`=(cos""(5pi)/6+ i sin ""(5pi)/6)+(cos ""(5pi)/6- isin "" (5pi)/6)`
`= 2 cos""(5 pi)/6 " "[ because e^(i theta) = cos theta + i sin theta]`
Promotional Banner

Similar Questions

Explore conceptually related problems

If z = ((sqrt(3))/(2) + (i)/(2))^(107) + ((sqrt(3))/(2)-(i)/(2))^(107) , then show that Im (z) = 0

If z=(sqrt(3)/2+i/2)^5+(sqrt(3)/2-i/2)^5 , then prove that Im(z)=0

If z = ((sqrt(3) + i)^(3) (3i+4)^(2))/((8 + 6i)^(2)) , then |z| is equal to

If z = (1)/((2 + 3i)^(2)) then |z| =

If z=((sqrt(3)+i)^(3)(3i+ 4)^(2))/((8+6i)^(2)) , then |z| is equal to

The complex number, z=((-sqrt(3)+3i)(1-i))/((3+sqrt(3)i)(i)(sqrt(3)+sqrt(3)i))

If z_(1)= 2sqrt(2)(1+i)" and "z_(2)=1+isqrt(3) , then z_(1)^(2)z_(2)^(3) is equal to

If z=(-1)/(2)+i(sqrt(3))/(2), " then "8+10z+7z^(2) is equal to