Home
Class 12
MATHS
Let z1a n dz2 b be toots of the equation...

Let `z_1a n dz_2` b be toots of the equation `z^2+p z+q=0,` where he coefficients `pa n dq` may be complex numbers. Let `Aa n dB` represent `z_1a n dz_2` in the complex plane, respectively. If `/_A O B=theta!=0a n dO A=O B ,w h e r eO` is the origin, prove that `p^2=4q"cos"^2(theta//2)dot`

Text Solution

Verified by Experts

Since `z_1 +z_2 =- and z_1z_2 = q`
Now `z_1/z_2=|z_1|/|z_2|(cos alpha + I sin alpha )`
`rArr z_1/z_2 =(cos alpha + I sin alpha )/(1)`
`[ because |z_1| = |z_2|]`
Applying componendo and dividendo, we get
`(z_1+z_2)/(z_1-z_2)=(cosalpha+ i sin alpha + 1)/(cos alpha + i sin alpha-1)`
`=(2 cos^2(alpha//2)+2 i sin(alpha//2)cos(alpha//2))/(-2 sin^2(alpha//2)+2 isin(alpha//2)cos (alpha//2))`
`=(2 cos (alpha//2)[cos(alpha//2)+ i sin (alpha//2)])/(2i sin(alpha//2)[cos (alpha//2)+sin(alpha//2)])`
`=(cot (alpha //2))/(i)= - i cot alpha//2 rArr (-p)/(z_1 - z_2)=-i cot (alpha //2)`
On squaring both sides , we get `p^2/(z_1-z_2)^2=-i cot (alpha//2)`
`rArr " " p^2/((z_1+z_2)^2-4z_1z_2)=- cot^2 (alpha//2)`
`rArr p^2/(p^2 -4q)=- cot ^2(alpha//2)`
`rArr p^2= - p^2cot^2(alpha//2)+4q cot^2(alpha//2)`
`rArr p^2(1+cot^2 alpha//2)=4q cot^2 (alpha//2)`
`p^2 cosec^2 (alpha //2)= 4q cot^2 (alpha// 2)`
`rArr p^2 = 4q cos^2 alpha//2`
Promotional Banner

Similar Questions

Explore conceptually related problems

Let z_(1)" and "z_(2) be the roots of the equation z^(2)+pz+q=0 , where p,q are real. The points represented by z_(1),z_(2) and the origin form an equilateral triangle if

Let z_(1)" and "z_(2) be two roots of the equation z^(2)+az+b=0 , z being complex number further, assume that the origin, z_(1)" and "z_(2) form an equilateral triangle, then

If z_1a n dz_2 are the complex roots of the equation (x-3)^3+1=0,t h e nz_1+z_2 equal to a. 1 b. 3 c. 5 d. 7

If the sum of square of roots of the equation x^2+(p+i q)x+3i=0 is 8, then find the value of pa n dq j ,w h e r epa n dq are real.

Show that a x+b y+r=0,b y+c z+p=0a n dc z+a x+q=0 are perpendicular to x-y ,y-za n dz-x planes, respectively.

If O Aa n dO B are equal perpendicular chords of the circles x^2+y^2-2x+4y=0 , then the equations of O Aa n dO B are, where O is the origin.

Let z=x+i y be a complex number, where xa n dy are real numbers. Let Aa n dB be the sets defined by A={z :|z|lt=2}a n dB={z :(1-i)z+(1+i)bar z geq4} . Find the area of region AnnB

Let pa n dq be the roots of the equation x^2-2x+A=0 and let ra n ds be the roots of the equation x^2-18 x+B=0 . If p

If z_1a n dz_2 are two complex numbers such that |z_1|=|z_2|a n d arg(z_1)+a r g(z_2)=pi , then show that z_1,=-( barz )_2dot

If z_1a n dz_2 are conjugate to each other then find a r g(-z_1z_2)dot