Home
Class 12
MATHS
The complex numbers z1, z2 and the origi...

The complex numbers `z_1, z_2` and the origin form an equilateral triangle only if (A) `z_1^2+z_2^2-z_1z_2=0` (B) `z_1+z_2=z_1z_2` (C) `z_1^2-z_2^2=z_1z_2` (D) none of these

Text Solution

Verified by Experts

Since , `z_(1) , z_(2) , z_(3)` are the vertices of an equilateral triangle .
`therefore` Circumcentre `(z_(0))` = Centroid `((z_(1) + z_(2) + z_(3))/(3)) " " .... (i)`
Also , for equilateral triangle
`z_(1)^(2) + z_(2)^(2) + z_(3)^(2) = z_(1)z_(2) + z_(2)z_(3) + z_(3)z_(1) " ".... (ii)`
On squaring Eq. (i) we get
`9z_(0)^(2) = z_(1)^(2) + z_(2)^(2) + z_(3)^(2) + 2(z_(1) z_(2) + z_(2)z_(3) + z_(3)z_(1))`
`implies 9z_(0)^(2) = z_(1)^(2) + z_(2)^(2) + z_(3)^(2) + 2(z_(1)^(2) + z_(2)^(2) + z_(3)^(2)) " " `[from Eq. (ii)]
`implies 3z_(0)^(2) = z_(1)^(2) + z_(2)^(2) + z_(3)^(2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

The points, z_1,z_2,z_3,z_4, in the complex plane are the vartices of a parallelogram taken in order, if and only if (a) z_1+z_4=z_2+z_3 (b) z_1+z_3=z_2+z_4 (c) z_1+z_2=z_3+z_4 (d) None of these

If a m p(z_1z_2)=0a n d|z_1|=|z_2|=1,t h e n z_1+z_2=0 b. z_1z_2=1 c. z_1=z _2 d. none of these

If z_0 is the circumcenter of an equilateral triangle with vertices z_1, z_2, z_3 then z_1^2+z_2^2+z_3^2 is equal to

If z_1, z_2 and z_3 , are the vertices of an equilateral triangle ABC such that |z_1 -i = |z_2 -i| = |z_3 -i| .then |z_1 +z_2+ z_3| equals:

If the complex numbers z_(1), z_(2)" and "z_(3) denote the vertices of an isoceles triangle, right angled at z_(1), " then "(z_(1)-z_(2))^(2)+(z_(1)-z_(3))^(2) is equal to

Complex numbers z_1 , z_2 , z_3 are the vertices A, B, C respectively of an isosceles right angled trianglewith right angle at C and (z_1- z_2)^2 = k(z_1 - z_3) (z_3 -z_2) , then find k.

For all complex numbers z_1,z_2 satisfying |z_1|=12 and |z_2-3-4i|=5 , find the minimum value of |z_1-z_2|

Let z_1 and z_2 be two distinct complex numbers and let z=(1-t)z_1+t z_2 for some real number t with 0 (a) |z-z_1|+|z-z_2|=|z_1-z_2| (b) arg(z-z_1)=arg(z-z_2) (c) (z-z_1) bar(z_2-z_1) = bar (z-z_1)(z_2-z_1) (d) a r g(z-z_1)=a r g(z_2-z_1) .

If |z_1/z_2|=1 and arg (z_1z_2)=0 , then

If 2z_1//3z_2 is a purely imaginary number, then find the value of "|"(z_1-z_2")"//(z_1+z_2)|dot