Home
Class 12
MATHS
For any integer k, let alpha h= cos. (k ...

For any integer k, let `alpha _h= cos. (k pi)/(7)+ I sin. (k pi)/(7) " where if "=sqrt(-1).` The value of the expression
`(Sigma_(k=1)^(12) |alpha_(k+1)-alpha_k|)/(Sigma_(k=1)^(3) |alpha_(4k+1)-alpha_(4k-2)|)`is

Text Solution

Verified by Experts

The correct Answer is:
4

Given `alpha_(k) = cos ((kpi)/(7)) + i sin ((k pi)/(7))`
`= cos ((2k pi)/(14)) + i sin ((2 kpi)/(14))`
`therefore alpha_(k)` are vertices of regular polygon having 14 sides .
Let the side length of regular polygon be `alpha`.
`therefore |alpha_(k + 1) - alpha_(k)| ` = length of a side of the regular polygon
`= alpha " " ... (i)`
and `|alpha_(4k-1) - alpha_(4k-2)|` = length of a side of the regular polygon
` = alpha " " .... (ii)`
`therefore ( sum_(h=1)^(12) |alpha_(k+1) - alpha_(k)|)/(sum_(h=1)^(3) |alpha_(4k-1) - alpha_(4k-2)|) = (12(a))/(3(a)) = 4`
Promotional Banner

Similar Questions

Explore conceptually related problems

For any integer k , let alpha_k=cos((kpi)/7)+isin((kpi)/7),w h e r e i=sqrt(-1)dot Value of the expression (sum_(k=1)^(12)|alpha_(k+1)-alpha_k|)/(sum_(k=1)^3|alpha_(4k-1)-alpha_(4k-2)|) is

Find the value of sum_(k =1)^(8)(cos"" (2k pi)/(9) + i(sin""2k pi)/(9))

Find sum_(k=1)^(n)(1)/(k(k+1)) .

The value of is sum_(k=1)^(10)(sin"" (2k pi)/(11)+ icos ""(2k pi)/(11)) is

Find the value of lim_(n rarr oo)sum_(k=1)^(n)(k^(2)+k-1)/((k+1)!) .

The minimum value of the expression x^(2)-k x+alpha is 6 which is obtained at x=3 . Find the value of alpha / 3 .

The value of sum_(k=1)^(13) (1)/(sin((pi)/(4) + ((k-1)pi)/(6)) sin ((pi)/(4)+ (kpi)/(6))) is equal to

The value of Sigma_(i=1)^(n) Sigma_(j=1)^(i) underset(k=1)overset(j) =220, then the value of n equals

Find the value of ‘K’ for which the points are collinear (K, K) (2, 3) and (4, -1).