Home
Class 12
MATHS
Let omega=-1/2+i(sqrt(3))/2, then value ...

Let `omega=-1/2+i(sqrt(3))/2,` then value of the determinant `[[1, 1, 1],[ 1,-1,-omega^2],[omega^2, omega^2,omega]]` is (a) `3omega` (b) `3omega(omega-1)` (c) `3omega^2` (d) `3omega(1-omega)`

A

`3 omega`

B

`3 omega ( omega -1)`

C

`3 omega^2`

D

`3 omega (1- omega)`

Text Solution

Verified by Experts

The correct Answer is:
B

Let `Delta=|{:(1" "1" "1),(1" "-1-omega^2" " omega^2),(1" " omega^(2) " "omega):}|`
Applying `R_2 rarr R_2-R_1: R_3 rarr R_3-R_3-R_1`
`=|{:(1" "1" "1),(0" "-2-omega^2" "omega^2-1),(0 " "omega^2-1" "omega-1):}|`
`=(-2 -omega^2)(omega-1)-(omega^2-1)^2`
`=-2omega+2-omega^2+omega^2-(omega^4-2omega^2+1)`
`3omega^2-3 omega=3 omega(omega-1)" "([because omega^4=omega)`
Promotional Banner

Similar Questions

Explore conceptually related problems

If omega = cis (2pi)/(3) , then number of distinct roots of |(z+1,omega,omega^(2)),(omega,z + omega^(2),1),(omega^(2),1,z+omega)| = 0.

Prove that the value of determinant |{:(1,,omega,,omega^(2)),(omega ,,omega^(2),,1),( omega^(2),, 1,,omega):}|=0 where omega is complex cube root of unity .

If omega is the complex cube root of unity then |[1,1+i+omega^2,omega^2],[1-i,-1,omega^2-1],[-i,-i+omega-1,-1]|=

If omega ne 1 is a cubit root unity and |(1,1,1),(1,-omega^(2)-1,omega^(2)),(1,omega^(2),omega^(7))| = 3 k, then k is equal to

If omega is a cube root of unity, then find the value of the following: (1+omega-omega^2)(1-omega+omega^2)

If omega ne 1" and "omega^(3)=1 , the (a omega+b + c omega^(2))/(a omega^(2)+b omega+c)+(a omega^(2)+b+c omega)/(a+b omega+c omega^(2)) is equal to

If omega is an imaginary cube root of unity, then (1+omega-omega^2)^7 is equal to (a) 128omega (b) -128omega (c) 128omega^2 (d) -128omega^2

If omega is the cube root of unity, then then value of (1 - omega) (1 - omega^(2))(1 - omega^(4))(1 - omega^(8)) is