Home
Class 12
MATHS
If omega ne 1 is a cubic root of unit an...

If `omega ne` 1 is a cubic root of unit and `(1 + omega)^(7)` = A + B`omega`, then (A, B) equals

A

0,1

B

1,1

C

1,2

D

`-1,1`

Text Solution

Verified by Experts

The correct Answer is:
B

`(1+omega)^7=(1+omega)(1+omega)^6`
`=(1+omega)(-omega^2)^6=1+omega`
`rArr " "A+Bomega=1+omega`
`rArr" "A=1,B=1`
Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is a cube root of unity and (omega-1)^7=A+Bomega then find the values of A and B

If omega pm 1 is a cube root of unity, show that (1 - omega + omega^(2))^(6) + (1 + omega - omega^(2))^(6) = 128

If omega(!= 1) be an imaginary cube root of unity and (1+omega^2)=(1+omega^4), then the least positive value of n is (a) 2 (b) 3 (c) 5 (d) 6

If omega is a non real cube root of unity, then (a+b)(a+b omega)(a+b omega^2)=

If omega ne 1 is a cubit root unity and |(1,1,1),(1,-omega^(2)-1,omega^(2)),(1,omega^(2),omega^(7))| = 3 k, then k is equal to

If omega pm 1 is a cube root of unity, show that (a + b omega + c omega^(2))/(b + c omega + a omega^(2))+ (a + b omega + c omega^(2))/(c + a omega + b omega^(2)) = -1

If omega pm 1 is a cube root of unity, show that (1 + omega) (1 + omega^(2))(1 + omega^(4))(1 + omega^(8))…(1 + omega^(2^(11))) = 1

If omega is a cube root of unity, then the value of (1 - omega + omega^2)^4 + (1 + omega - omega^2)^(4) is ……….