Home
Class 12
MATHS
Let omega be the complex number cos (2p...

Let `omega` be the complex number cos `(2pi)/(3)+ " i sin ".(2pi)/(3).` then the number of distinct complex number z satisfying
`|{:(z+1,,omega,,omega^(2)),(omega,,z+omega^(2),,1),(omega^(2),,1,,z+omega):}|=0 " is equal to "" _______"`

Text Solution

Verified by Experts

The correct Answer is:
1

Let `A=[(1" "omega" "omega^2),(omega" "omega^2" "1),(omega^2" " 1 " "z+omega)]`
`A=[(0" "0" "0),(0" "0" "0),(0" "0" "0)]`and Tr (A)=0,|A|=0
`A^3=0`
`A=[(z+1" "omega" "omega^3),(omega" "z+omega^2" "1),(omega^2" "1" "z+omega)]`=[A+zl]=0
`rArr " "z^3=0`
`rArr z=0 ` the number of z satisfying the given equation is 1.
Promotional Banner

Similar Questions

Explore conceptually related problems

Let omega be the complex number cos((2pi)/3)+isin((2pi)/3) . Then the number of distinct complex cos numbers z satisfying Delta=|(z+1,omega,omega^2),(omega,z+omega^2,1),(omega^2,1,z+omega)|=0 is

If omega = cis (2pi)/(3) , then number of distinct roots of |(z+1,omega,omega^(2)),(omega,z + omega^(2),1),(omega^(2),1,z+omega)| = 0.

Prove that the value of determinant |{:(1,,omega,,omega^(2)),(omega ,,omega^(2),,1),( omega^(2),, 1,,omega):}|=0 where omega is complex cube root of unity .

If omega ne 1 is a cubit root unity and |(1,1,1),(1,-omega^(2)-1,omega^(2)),(1,omega^(2),omega^(7))| = 3 k, then k is equal to

Find number of values of complex numbers omega satisfying the system of equaltion z^(3)=-(bar(omega))^(7) and z^(5).omega^(11)=1

If omega is the complex cube root of unity then |[1,1+i+omega^2,omega^2],[1-i,-1,omega^2-1],[-i,-i+omega-1,-1]|=

If omega is the cube root of unity then Assertion : (1-omega+omega^(2))^(6)+(1+omega-omega^(2))^(6)=128 Reason : 1+omega+omega^(2)=0