Home
Class 12
MATHS
Find the sum 1xx(2-omega)xx(2-omega^(2))...

Find the sum `1xx(2-omega)xx(2-omega^(2))+2xx(-3-omega)xx(3-omega^(2))+….+(n-1)xx(n-omega)xx(n-omega^(2))`, where `omega` is an imaginary cube root of unity.

Text Solution

Verified by Experts

The correct Answer is:
`((n(n+1))/(2))^(2) - n`

Here `T_r=(r-1)(r-omega)(r-omega)^2]=(r^3-1)`
`therefore " "S_n=underset(r=1)overset(n)Sigma(r^3-1)=[(n(n+1))/2]^2-n`
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omega^2)+.+(n-1)(n-omega)(n-omega^2), where omega is an imaginary cube root of unity, is………

(2-omega)(2-omega^(2))(2-omega^(10))(2-omega^(11))="…….." , where omega is the complex cube root of unity

The polynomial x^6+4x^5+3x^4+2x^3+x+1 is divisible by_______ where w is the cube root of units x+omega b. x+omega^2 c. (x+omega)(x+omega^2) d. (x-omega)(x-omega^2) where omega is one of the imaginary cube roots of unity.

If x=omega-omega^2-2 then , the value of x^4+3x^3+2x^2-11x-6 is (where omega is a imaginary cube root of unity)

Prove that the value of determinant |{:(1,,omega,,omega^(2)),(omega ,,omega^(2),,1),( omega^(2),, 1,,omega):}|=0 where omega is complex cube root of unity .

If omega ne 1 is a cube root of unity, show that (i) (1-omega+omega^(2))^(6)+(1+omega-omega^(2))^(6)=128 (ii) (1+omega)(1+omega^(2))(1+omega^(4))(1+omega^(8))…2n terms=1

Let omega be a imaginary root of x^(n)=1 . Then (5- omega)(5- omega^2)"………"(5-omega^(n-1)) is

If omega ne 1 is a cubit root unity and |(1,1,1),(1,-omega^(2)-1,omega^(2)),(1,omega^(2),omega^(7))| = 3 k, then k is equal to

If omega is a complex cube root of unity, then (a+b omega+c omega^(2))/(c+a omega+b omega^(2))+(c+a omega+b omega^(2))/(a +b omega+c omega^(2))+(b+c omega+a omega^(2))/(b+c omega+a omega^(5))=