Home
Class 12
MATHS
If 1, a1, a2,....,a(n-1) are the nth roo...

If `1, a_1, a_2,....,a_(n-1)` are the nth roots of unity then prove that `(1-a_1)(1-a_2)(1-a_3)=(1-a_(n-1))=n`

Text Solution

Verified by Experts

Since `1,a_1,a_2…a_(n+1)` are nth roots of unity `rArr (x^n-1)=(x-1)(x-a_1)(x-a_2)……(x-a_(n-1))`
`rArr (x^n-1)/(x-1)=(x-a_1)(x-a_2)….(x-a_(n-1))`
`rArr x^(n-1)+n^(n-2)+…..+x^2+x+1`
`rArr x^(n-1)+x^(n-2)+…….+x^2+x+1`
`=(x-a_1)(x-a_2)......(x-a_(n-1))`
`[ because (x^n-1)/(x-1)=x^(n-2)+....+x+1]`
On putting x=1 we get 1+1+...n times
`=(1-a_1)(1-a_2).....(1-a_(n-1))`
`rArr (1-a_1)(1-a_2)....(1-a_(n-1))=n`
Promotional Banner

Similar Questions

Explore conceptually related problems

If roots of an equation x^n-1=0 are 1,a_1,a_2,........,a_(n-1) then the value of (1-a_1)(1-a_2)(1-a_3)........(1-a_(n-1)) will be (a) n (b) n^2 (c) n^n (d) 0

If S+a_1+a_2+a_3++a_n ,a_1 in R^+ for i=1ton , then prove that S/(S-a_1)+S/(S-a_2)++S/(S-a_n)geq(n^2)/(n-1),AAngeq2

If a_1, a_2, ,a_n >0, then prove that (a_1)/(a_2)+(a_2)/(a_3)+(a_3)/(a_4)++(a_(n-1))/(a_n)+(a_n)/(a_1)> n

If a ,a_1, a_2, a_3, a_(2n),b are in A.P. and a ,g_1,g_2,g_3, ,g_(2n),b . are in G.P. and h s the H.M. of aa n db , then prove that (a_1+a_(2n))/(g_1g_(2n))+(a_2+a_(2n-1))/(g_1g_(2n-1))++(a_n+a_(n+1))/(g_ng_(n+1))=(2n)/h

Let a_1,a_2,.........a_n be real numbers such that sqrt(a_1)+sqrt(a_2-1)+sqrt(a_3-2)++sqrt(a_n-(n-1))=1/2(a_1+a_2+.......+a_n)-(n(n-3)/4 then find the value of sum_(i=1)^100 a_i

If a_1,a_2,a_3….a_(2n+1) are in A.P then (a_(2n+1)-a_1)/(a_(2n+1)+a_1)+(a_2n-a_2)/(a_(2n)+a_2)+....+(a_(n+2)-a_n)/(a_(n+2)+a_n) is equal to

If a_1,a_2, a_3, a_4 be the coefficient of four consecutive terms in the expansion of (1+x)^n , then prove that: (a_1)/(a_1+a_2)+(a_3)/(a_3+a_4)=(2a_2)/(a_2+a_3)dot

If a_(1), a_(2) , ……. A_(n) are in H.P., then the expression a_(1)a_(2) + a_(2)a_(3) + ….. + a_(n - 1)a_(n) is equal to

Let A_1,A_2,....A_n be the vertices of an n-sided regular polygon such that , 1/(A_1A_2)=1/(A_1A_3)+1/(A_1A_4) . Find the value of n.

If a_(1), a_(2), a_(3), ……. , a_(n) are in A.P. and a_(1) = 0 , then the value of (a_(3)/a_(2) + a_(4)/a_(3) + .... + a_(n)/a_(n - 1)) - a_(2)(1/a_(2) + 1/a_(3) + .... + 1/a_(n - 2)) is equal to