Home
Class 12
MATHS
The coefficient of t^(24) in (1+t^2)^(12...

The coefficient of `t^(24)` in `(1+t^2)^(12)(1+t^(12))(1+t^(24))` is `^12 C_6+3` b. `^12 C_6+1` c. `^12 C_6` d. `^12 C_6+2`

A

`.^(12)C_(6) + 3`

B

`.^(12)C_(6) + 1`

C

`.^(12)C_(6) `

D

`.^(12)C_(6) + 2`

Text Solution

Verified by Experts

Hence ,Coefficient of `t^24` in `{(1+t^2)^12(1+t^12)(1+t^24)}`
=Coefficient of `t^24` in `{(1+t^2)^12.(1+t^12)+t^24+t^36)}`
=Coefficient of `t^24` in `{(1+t^2)^12+t^12(1+t^2)^12+t^12(1+t^2)^12},[Neglecting t^36 (1+t^2)^12]`
=Coefficient of `t^24 =(.^12C_12+.^12C_6+.12^C_0)=2+.^12C_6`.
Promotional Banner

Similar Questions

Explore conceptually related problems

The coefficient of X^24 in the expansion of (1+X^2 )^12(1+X^12)(1+X^24)

The coefficient of t^4 in ((1-t^6)/(1-t))^3 (a) 18 (b) 12 (c) 9 (d) 15

Simplify (5t^(3))/(4t-8)xx(6t-12)/(10t)

Simplify (5t^(3))/(4t-8)times(6t-12)/(10t)

If ""^(n)C_(4)=""^(n)C_(6) find ""^(12)C_(n) .

The value of ((log)_2 24)/((log)_(96)2)-((log)_2 192)/((log)_(12)2) is 3 (b) 0 (c) 2 (d) 1

Simplify : (2a+3b+4c) ( 4a^(2) + 9b^(2) + 16c^(2) -6ab - 12bc - 8ca )