Home
Class 12
MATHS
If sum(r=0)^(2n)ar(x-2)^r=sum(r=0)^(2n)b...

If `sum_(r=0)^(2n)a_r(x-2)^r=sum_(r=0)^(2n)b_r(x-3)^ra n da_k=1` for all `kgeqn ,` then show that `b_n=^(2n+1)C_(n+1)` .

Text Solution

Verified by Experts

Let ` (y= a)^(m)` , where m is a positive integer, r `le` m
Now , ` (dy)/(dx) = m (x - a)^(m-1) rArr (d^(2) y)/(dx^(2)) = m (m-1) (x - a) ^(m -2)`
`rArr (d^(3) y)/(dx^(3)) = m (m -1) (m-2) (m-3) (x -a)^(n-4)`
On differentiating r times , we get
`(d^(r) y)/(dx^(r)) = m (m-1)...(m - r + 1) (x -a)^(m-r)`
`= (m!)/((m-r)!) (x -a)^(m-r) = r !(""^(m)C_(r)) (x - a)^(n-r)`
and for ` r gt m , (d^(r)y)/(dx^(r)) = 0 `
Now , ` sum_(r=0)^(2n) a , (x - 2)^(r) = sum_(r=0)^(2n) b_(r)` [given]
On differnentiating both sides n times w.r.t.x, we get
` sum_(r=0)^(2n) a_(r) (n!)^(r) C_(n) (x - 2)^(r-n) = sum_(r=0)^(2n) b_(r) (n!) ""^(r)C_(n) (x-3) ^(r-n)`
On putting x = 3, we get
[ since ,all the terms except first on RHS bocome zero]
`rArr b_(n) = ""^(n)C_(n) + ""^(n+1)C_(n) + ""^(n+2)C_(n) +...+ ""^(2n)C_(n) `
` [because a_(r) = 1, rArr ge n]`
` (""^(n+2)C_(n+1) + ""^(n+2)C_(n)) +...+ ""^(2n)C_(n)`
`=""^(n+3)C_(n+1)+...+""^(n2)C_(n)=...`
`= ""^(n2)C_(n+1)+ ""^(n2)C_(n)= ""^(2n+1)C_(n+1)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If sum_(r=0)^n{a_r(x-alpha+2)^r-b_r(alpha-x-1)^r}=0, then prove that b_n-(-1)^n a_n=0.

If sum_(r=0)^nr/(^n C_r)=sum_(r=0)^n(n^2-3n+3)/(2.^n C_r) , then a. n=1 b. n=2 c. n=3 d. none of these

Statement1: if n in Na n dn is not a multiple of 3 and (1+x+x^2)^n=sum_(r=0)^(2n)a_r x^r , then the value of sum_(r=0)^n(-1)^r a r^n C_r is zero Statement 2: The coefficient of x^n in the expansion of (1-x^3)^n is zero, if n=3k+1orn=3k+2.

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of

If sum_(r=0)^(n) (pr+2).""^(n)C_(r)=(25)(64) where n, p in N , then

If s_(n) = sum_(r = 0)^(n) 1/(""^(n)C_(r)) and t_(n) = sum _(r = 0)^(n) r/(""^(n)C_(r)) ,then t_(n)/s_(n) is equal to

The value of sum_(r=0)^(3n-1)(-1)^r 6nC_(2r+1)3^r is

If (1+2x+x^2)^n=sum_(r=0)^(2n)a_r x^r ,then a= (^n C_2)^2 b. ^n C_rdot^n C_(r+1) c. ^2n C_r d. ^2n C_(r+1)

If sum_(r=0)^(n){("^(n)C_(r-1))/('^(n)C_(r )+^(n)C_(r-1))}^(3)=(25)/(24) , then n is equal to

Find the sum of sum_(r=1)^n(r^n C_r)/(n C_(r-1) .