Home
Class 12
MATHS
Find the sum of the series sum(r=0)^(n...

Find the sum of the series
`sum_(r=0)^(n) (-1)^(r ) ""^(n)C_(r ) [(1)/(2^(r )) + (3^(r ))/(2^(2r)) + (7^(r ))/(2^(3 r)) + (15^(r ))/(2^(4r)) …. "upto m terms"]`

Text Solution

Verified by Experts

`underset (r=0)overset(n)Sigma (-1)^(n) C_(r)[(1)/(2^(r ))+(3^(r ))/(2^(2r))+(7^(r ))/(2^(3r))+(15^(r ))/(2^(4r))+…"upto m terms"]`
`=underset(r=0)overset(n)Sigma(-1)^(r ) C_(r)(1/2)^(r )+ underset(r=0)overset(n)Sigma^(r )C_(r )(3/4)^(r )+underset(r=0)overset(n)Sigma(-1)^(r )C_(r )(7/8)^(r )+....` upto m terms
`=(1-1/2)^(n)+(1-3/4)^(n)+(1-7/8)^(r) +...` up to m terms
`[using underset(r=0)overset(n)Sigma (-1)^(r )C_(r )x^(r )=(1-x)^(n)]`
`=(1/2)^(n)+(1/4)^(n)+(1/8)^(n)+...` up to m terms
`=(1/2)^(n)[(1=-(1/2)^(m))/(1-1/2)]=(2^(mn)-1)/(2^(mn)(2^(n)-1)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum of the series sum_(r=1)^n rxxr !dot

Find the sum of sum_(r=1)^n(r^n C_r)/(n C_(r-1) .

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is

The value of sum_(r=0)^(3n-1)(-1)^r 6nC_(2r+1)3^r is

Find the sum sum_(j=0)^(n) (""^(4n+1)C_(j)+""^(4n+1)C_(2n-j)) .

The value of sum_(r=0)^(40) r""^(40)C_(r)""^(30)C_(r) is

Find the sum sum_(r=1)^n r^2(^n C_r)/(^n C_(r-1)) .

Find the sum sum_(i=0)^r.^(n_1)C_(r-i) .^(n_2)C_i .

The sum of series Sigma_(r=0)^(r) (-1)^r(n+2r)^2 (where n is even) is

Find the sum sum_(r=0)^n^(n+r)C_r .