Home
Class 12
MATHS
Given, sn=1+q+q^2++q^n ,Sn=1+(q+1)/2+((q...

Given, `s_n=1+q+q^2++q^n ,S_n=1+(q+1)/2+((q+1)/2)^2++((q+1)/2)^n ,q!=1` prove that `^n+1C_1+^(n+1)C_2s_1+^(n+1)C_3s_2++^(n+1)C_(n+1)s_n2^n S_ndot`

Text Solution

Verified by Experts

`.^(n+1)C_1+.^(n+1)C_2s_1+.^(n+1)C_3s_2+...+.^(n+1)C_(n+1s_n)`
`=sum_(r=1)^(n+1).^(n+1)C_rs_(r-1)`,
where `s_n=1+q+q^2+...+q^n=(1-q^(n+1))/(1-q)`
` therefore sum_(r=1)^(n+1).^(n+1)C_r((1-q^r)/(1-q))=(1)/(1-q)(sum_(r=1)^(n+1).^(n+1)C_r-sum_(r=1)^(n+1).^(n+1)C_rq^r)`
` =(1)/(1-q)[(1+1)^(n+1)-(1+q)^(n+1)]`
` =(1)/(1-q)[2^(n+1)-(1+q)^(n+1)]....(i)`
Alos, `S_n=1((q+1)/(2))+((q+1)/(2))^2+...+((q+1)/(2))^n`
` =(1-((q+1)/(2))^(n+1))/(1-((q+1)/(2)))=(2^(n+1)-(q+1)^(n+1))/(2^n(1-q))....(ii)`
From Eqs. (i) and (ii),
` .^(n+1)C_1+ .^(n+1)C_2s_1+.^(n+1)C_3s_2+...+.^(n+1)C_n+1s_n=2.^nS_n`
Promotional Banner

Similar Questions

Explore conceptually related problems

Given, s_n=1+q+q^2+.....+q^n ,S_n=1+(q+1)/2+((q+1)/2)^2+...+((q+1)/2)^n ,q!=1 prove that "^(n+1)C_1+^(n+1)C_2s_1+^(n+1)C_3s_2+......+^(n+1)C_(n+1)s_n=2^n S_ndot

Prove that ^n C_0 ^(2n)C_n- ^n C_1 ^(2n-2)C_n+ ^n C_2^(2n-4)C_n-=2^ndot

Prove that ^n C_0^n C_0-^(n+1)C_1^n C_1+^(n+2)C_2^n C_2-=(-1)^ndot

Prove that ^m C_1^n C_m-^m C_2^(2n)C_m+^m C_3^(3n)C_m-=(-1)^(m-1)n^mdot

Prove that "^n C_0^(2n)C_n-^n C_1^(2n-1)C_n+^n C_2xx^(2n-2)C_n++(-1)^n^n C_n^n C_n=1.

Prove that .^(2n)C_(n) = ( 2^(n) xx 1 xx 3 xx …(2n-1))/(n!)

Prove that ^n C_1(^n C_2)(^n C_3)^3(^n C_n)^nlt=((2^n)/(n+1))^(n+1_C()_2),AAn in Ndot

Prove that .^(n)C_(1) + 2 .^(n)C_(2) + 3 .^(n)C_(3) + "…." + n . ^(n)C_(n) = n 2^(n-1) .

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^ s C_r=3^n-1.

Let S_n=1+q+q^2 +?+q^n and T_n =1+((q+1)/2)+((q+1)/2)^2+?+((q+1)/2)^n If alpha T_100=^101C_1 +^101C_2 xS_1 +^101C_101 xS_100, then the value of alpha is equal to (A) 2^99 (B) 2^101 (C) 2^100 (D) -2^100