Home
Class 12
MATHS
The value of r for which .^(20)C(r)xx.^(...

The value of r for which `.^(20)C_(r)xx.^(20)C_(0)+.^(20)C_(r-1)xx.^(20)C_(1)+.^(20)C_(r-2)xx.^(20)C_(2)+...+.^(20)C_(0)xx.^(20)C_(r)` is maximum is

A

15

B

10

C

11

D

20

Text Solution

Verified by Experts

We know that , `(1+x)^(20) =""^(20)C_(0)+""^(20)C_(1)x+""^(20)C_(2)x^(2) +...+""^(20)C_(r-1)x^(r-1)+""^(20)C_(r)x^(r)+...+""^(20)C_(20)x^(20)`
`:. (1+x)^(20)*(1+x)^(20)=(""^(20)C_(0)+""^(20)C_(1)x+""^(20)C_(2)x_(2) +...+""^(20)C_(r-1)x^(r-1)+""^(20)C_(r)x^(r)+...+""^(20)C_(20)x^(20) ) xx (""^(20)C_(0)+""^(20)C_(1)x+...+""^(20)C_(r-1)x^(r-1)+""^(20)C_(r)C^(r)+...+""^(20)C_(20)x^(20)) `
` implies (1+x)^(40)=(""^(20)C_(0)*""^(20)C_(r)+""^(20)C_(1)*""^(20)C_(r-1)...""^(20)C_(r)""^(20)C_(0))x^(r)+....`
On comparing the coefficient of `x^(r)` of both sides, we get
`""^(20)C_(0)*""^(20)C_(r)+""^(20)C_(1)""^(20)C_(r-1)+...+""^(20)C_(r)""^(20)C_(0)=""^(40)C_(r)`
The maximum value of `""^(40)C_(r)` is possible only when r=20 `" "` [ `:' ""^(n)C_(n//2)` is maximum when n is even ]
Thus , required value of r is 20.
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of r for which .^(20)C_(r ), .^(20)C_(r - 1) .^(20)C_(1) + .^(20)C_(2) + …… + .^(20)C_(0) .^(20)C_(r ) is maximum, is

Find the value of .^(20)C_(0) xx .^(13)C_(10) - .^(20)C_(1) xx .^(12)C_(9) + .^(20)C_(2) xx .^(11)C_(8) - "……" + .^(20)C_(10) .

The value of .^(40)C_(0) xx .^(100)C_(40) - .^(40)C_(1) xx .^(99)C_(40) + .^(40)C_(2) xx .^(98)C_(40) "……." + .^(40)C_(40) xx .^(60)C_(40) is equal to "____" .

The value of .^(n)C_(0) xx .^(2n)C_(r) - .^(n)C_(1)xx.^(2n-2)C_(r)+.^(n)C_(2)xx.^(2n-4)C_(r)+"…." is equal to

"^(30)C_(0)*^(20)C_(10)+^(31)C_(1)*^(19)C_(10)+^(32)C_(2)*18C_(10)+....^(40)C_(10)*^(10)C_(10) is equal to

The value of sum_(r=0)^(40) r""^(40)C_(r)""^(30)C_(r) is

If a= .^(20)C_(0) + .^(20)C_(3) + .^(20)C_(6) + .^(20)C_(9) + "…..", b = .^(20)C_(1) + .^(20)C_(4) + .^(20)C_(7) + "……"' and c = .^(20)C_(2) + .^(20)C_(5) + .^(20)C_(8) + "…..", then Value of (a-b)^(2) + (b-c)^(2) + (c-a)^(2) is

If a= .^(20)C_(0) + .^(20)C_(3) + .^(20)C_(6) + .^(20)C_(9) + "…..", b = .^(20)C_(1) + .^(20)C_(4) + .^(20)C_(7) + "……"' and c = .^(20)C_(2) + .^(20)C_(5) + .^(20)C_(8) + "…..", then Value of a^(3) + b^(3) + c^(3) - 3abc is

Let m, in N and C_(r) = ""^(n)C_(r) , for 0 le r len Statement-1: (1)/(m!)C_(0) + (n)/((m +1)!) C_(1) + (n(n-1))/((m +2)!) C_(2) +… + (n(n-1)(n-2)….2.1)/((m+n)!) C_(n) = ((m + n + 1 )(m+n +2)…(m +2n))/((m +n)!) Statement-2: For r le 0 ""^(m)C_(r)""^(n)C_(0)+""^(m)C_(r-1)""^(n)C_(1) + ""^(m)C_(r-2) ""^(n)C_(2) +...+ ""^(m)C_(0)""^(n)C_(r) = ""^(m+n)C_(r) .

The sum of series ^(20)C_0-^(20)C1+^(20)C2-^(20)C3++^(20)C 10 is