Home
Class 12
MATHS
For r = 0, 1,"…..",10, let A(r),B(r), an...

For `r = 0, 1,"…..",10`, let `A_(r),B_(r)`, and `C_(r)` denote, respectively, the coefficient of `x^(r )` in the expansion of `(1+x)^(10), (1+x)^(20)` and `(1+x)^(30)`. Then `underset(r=1)overset(10)sum A_(r)(B_(10)B_(r ) - C_(10)A_(r ))` is equal to

A

`B_(10) - C_(10)`

B

`A_(10) (B_(10)^(2) - C_(10)A_(10))`

C

0

D

`C_(10) - B_(10)`

Text Solution

Verified by Experts

`A_(r)="Coefficient of "x^(r)" in "(1+x)^(10)=""^(10)C_(r)`
`B_(r)="Coefficient of "x^(r)" in "(1+x)^(20)=""^(20)C_(r)`
`C_(r)="Coefficient of "x^(r)" in"(1+x)^(30)=""^(30)C_(r)`
`:.underset(r=1)overset(10)sumA_(r)(B_(10)B_(r)-C_(10)A_(r))=underset(r=1)overset(10)sumA_(r)B_(10)B_(r)-underset(r=1)overset(10)sumA_(r)C_(10)A_(r)`
`=underset(r=1)overset(10)sum""^(10)C_(r)""^(20)C_(10)""^(20)C_(r)-underset(r=1)overset(10)sum""^(10)C_(r)""^(30)C_(10)""^(10)C_(r)`
`=underset(r=1)overset(10)sum""^(10)C_(10-r)""^(20)C_(10)""^(20)C_(r)-underset(r=1)overset(10)sum""^(10)C_(10-r)""^(30)C_(10)""^(10)C_(r)`
`=""^(20)C_(10)underset(r=1)overset(10)sum""^(10)C_(10-r).""^(20)C_(r)-""^(30)C_(10)underset(r=1)overset(10)sum""^(10)C_(10-r)""^(10)C_(r)`
`=""^(20)C_(10)(""^(30)C_(10)-1)-""^(30)C_(10)(""^(20)C_(10)-1)`
`=""^(30)C_(10)-""^(20)C_(10)=C_(10)-B_(10)`
Promotional Banner

Similar Questions

Explore conceptually related problems

For r = 0, 1,"…..",10 , let A_(r),B_(r) , and C_(r) denote, respectively, the coefficient of x^(r ) in the expansion of (1+x)^(10), (1+x)^(20) and (1+x)^(30) . Then sum_(r=1)^(10) A_(r)(B_(10)B_(r ) - C_(10)A_(r )) is equal to

The value of underset(r=0)overset(10)sumr^(10)C_(r),3^(r).(-2)^(10-r) is -

Find the coefficient of x^(25) in expansion of expression sum_(r=0)^(50)^(50)C_r(2x-3)^r(2-x)^(50-r) .

Find the sum underset(r=1)r(r+1)(r+2)(r+3) .

If the coefficients of (r-5)^th and (2r - 1)^th terms in the expansion of (1 + x)^34 are equal, find r.

The value of sum_(r=0)^(10) (-1)^(r).4^(10-r)""^(30)C_(r)""^(30-r)C_(10-r) is equal to

Find the value of underset(r = 0) overset(oo)sum tan^(-1) ((1)/(1 + r + r^(2)))

If n is a positive integer and r is a nonnegative integer, prove that the coefficients of x^r and x^(n-r) in the expansion of (1+x)^(n) are equal.

Find the value of sum_(r = 1)^(10) sum_(s = 1)^(10) tan^(-1) ((r)/(s))