Home
Class 12
MATHS
If a(n) =sum(r=0)^(n) (1)/(""^(n)C(r ))...

If `a_(n) =sum_(r=0)^(n) (1)/(""^(n)C_(r ))`, then `sum_(r=0)^(n) (r )/(""^(n)C_(r ))` equals

A

`(n - 1) a_(n)`

B

`n a_(n)`

C

`(1)/(2) n a_(n)`

D

None of these

Text Solution

Verified by Experts

Let `b=sum _(r=0)^(n)(r)/(.^Nc_r)=sum_(r=0)^(n)(-(n-r))/(.^Nc_R)`
`=n sum_(r=0)^(n)(1)/(.^n C_r)-sum_(r=0)^(n)(n-r)/(.^C_r)`
`=na_(n)-sum_(r=0)^(n) (n-r)/(.^nC_(n-r))[because .^Nc_r=.^nC_(n-r)]`
`=na_(n)-brArr 2b=na_(n)rArr b=(n)/(2)a_(n)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If s_(n) = sum_(r = 0)^(n) 1/(""^(n)C_(r)) and t_(n) = sum _(r = 0)^(n) r/(""^(n)C_(r)) ,then t_(n)/s_(n) is equal to

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , then the value of (sumsum)_(0leiltjlen) (i/(""^(n)C_(i))+j/(""^(n)C_(j)))

Find the sum sum_(r=0)^n^(n+r)C_r .

Find the sum sum_(r=1)^n r^2(^n C_r)/(^n C_(r-1)) .

If sum_(r=0)^(n){("^(n)C_(r-1))/('^(n)C_(r )+^(n)C_(r-1))}^(3)=(25)/(24) , then n is equal to

Find the sum of sum_(r=1)^n(r^n C_r)/(n C_(r-1) .

If sum_(r=0)^(n) (pr+2).""^(n)C_(r)=(25)(64) where n, p in N , then

Prove that sum_(r=0)^(2n)r(.^(2n)C_r)^2=n^(4n)C_(2n) .

The value of sum_(r=0)^n(a+r+a r)(-a)^r is equal to

Find the sum sum_(i=0)^r.^(n_1)C_(r-i) .^(n_2)C_i .