Home
Class 12
MATHS
Prove that 2^k(n,0)(n,k)-2^(k-1)(n,1)(n-...

Prove that `2^k(n,0)(n,k)-2^(k-1)(n,1)(n-1,k-1)+2^(k-2)(n,2)(n-2,k-2)-.....+(-1)^k(n,k)(n-k,0)=(n,k)`.

Text Solution

Verified by Experts

To show that
`2^(k).""^(n)C_(0).""^(n)C_(k)-2^(k-1).""^(n)C_(1).""^(n-1)C_(k-1)+2^(k-2).""^(n)C_(2).""^(n)C_(k-2)-...+(-1)^(k)""^(n)C_(k)""^(n-k)C_(0)=""^(n)C_(k)`
Taking LHS
`2^(k).""^(n)C_(0).""^(n)C_(k)-2^(k-1).""^(n)C_(1).""^(n-1)C_(k-1) +... +(-1)^(k)""^(n)C_(k).""^(n-k)C_(0)`
`=sum_(r=0)^(k)(-1)^(r).2^(k-r).""^(n)C_(r)""^(n-r)C_(k-r)`
`= sum _(r=0)^(k)(-1)^(r)2^(k-r).(n!)/(r!(n-r)!).((n-r)!)/((k-r)!(n-k)!)`
`= sum _(r=0)^(k)(-1)^(r).2^(k-r).(n!)/(r!(n-r)!k!).(k!)/(r!(k-r)!)`
`= sum _(r=0)^(k)(-1)^(r).2^(k-r). ""^(n)C_(k).""^(n)C_(r)=2^(k).""^(n)C_(k){sum _(r=0)^(k)(-1)^(r).(1)/(2^(r))""^(k)C_(r)}`
`=2^(k).""^(n)C_(k)(1-(1)/(2))^(k)=""^(n)C_(k)=RHS `
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sum_(k=1)^(n)(1)/(k(k+1))=1-(1)/(n+1).

Prove that sum_(k=0)^(n) (-1)^(k).""^(3n)C_(k) = (-1)^(n). ""^(3n-1)C_(n)

Prove that sum_(k=1)^n 1/(k(k+1))=1−1/(n+1) .

sum_(k=1)^ook(1-1/n)^(k-1)= a. n(n-1) b. n(n+1) c. n^2 d. (n+1)^2

Find sum_(k=1)^(n)(1)/(k(k+1)) .

If y^r=(n !^(n+r-1)C_(r-1))/(r^n),w h e r en=k r(k is contstant), then ("lim")_(rvecoo)y is equal to (a) (k-1)(log)_e(1+k)-k (b) (k+1)(log)_e(1-k)+k (c) (k+1)(log)_e(1-k)-k (d) (k-1)(log)_e(1-k)+k

The sum S_(n)=sum_(k=0)^(n)(-1)^(k)*^(3n)C_(k) , where n=1,2,…. is

Given (1-x^(3))^(n)=sum_(k=0)^(n)a_(k)x^(k)(1-x)^(3n-2k) then the value of 3*a_(k-1)+a_(k) is

Prove that sum_(k=1)^(n-1)(n-k)cos(2kpi)/n=-n/2 , where ngeq3 is an integer