Home
Class 12
MATHS
For any positive integers m, n (with n g...

For any positive integers m, n (with `n ge m`)
If `({:(n),(m):}) = .^(n)C_(m)` Prove that
`({:(n),(m):}) + ({:(n - 1),(m):}) + ({:(n - 2),(m):}) + … + ({:(m),(m):}) = ({:(n + 1),(m + 1):})`
Prove that
`({:(n),(m):}) + 2 ({:(n + 1),(m):}) + 3 ({:(n - 2),(m):}) + .... + (n - m + 1)`
`({:(m),(m):}) = ({:(n + 2),(m + 2):})`

Text Solution

Verified by Experts

Let `S = ((n)/(m))+((n-1)/(m)) + ((n-2)/(m))+ ((n-2)/(m)) +.....+((m)/(m)) =((n+1)/(m+1)).....(i)`
It is obvious that, `n ge m`
Note : This question is based upon additive loop.
Now ,`S =((m)/(m)) + ((m+1)/(m)) + ((m+2)/(m)) +.......+((n)/(m))`
` ={((m+1)/(m+1))+((m+1)/(m))}[because ((m)/(m)) = 1= ((m+1)/(m+1))]`
`= ((m+2)/(m+1)) + ((m+2))/(m)) + ......+ ((n)/(m))" "[because""^(n)C_(r)+ ""^(n)C_(r+1) = ""^(n+1)C_(r+1)]`
`=((m+2)/(m+1)) +......+((n)/(m))`
`=.............`
` =((n)/(m+1))+((n)/(m)) = ((n+1)/(m+1))` which is ture ....(ii)
Again, we have to prove that
`((n)/(m))+2((n-1)/(m)) + 3((n-2)/(m)) +......+ (n-m+1)((m)/(m)) = ((m+2)/(m+2))`
Let `S_(1) = ((n)/(m))+2((n-1)/(m)) +3((n-2)/(m)) +......+(n-m+1)((mm)/(m))`
`{:(= ((n)/(m)) + ((n-1)/(m)) + ((n-2)/(m)) +...+ ((m)/(m))), ( " "+ ((n-1)/(m)) + ((n-2)/(m)) +...+ ((m)/(m))), (" "+ ((n-2)/(m)) +...+((m)/(m)) ),(" "...) , (" "+ ((m)/(m))):}}n-m + 1` rows
Now, sum of the first row is `((n+1)/(m+1))`
Sum of the second row is `((n)/(m+1))`
Sum of the third row is `((n+1)/(m+1))`,
....................
Sum of the last row is `((m)/(m)) = ((m+1)/(m+1))`
Thus `S = ((n+1)/(m+1))+((n)/(m+1)) + ((n +1)/(m+1))+.......+ ((m+1)/(m+1)) = ((n+1+1)/(m+2)) = ((n+2)/(m+2))`
[from Eq. (i) replacing n by n +1 and m by m + 1]
Promotional Banner

Similar Questions

Explore conceptually related problems

For any positive integer (m,n) (with ngeqm ), Let ((n),(m)) =.^nC_m Prove that ((n),(m)) + 2((n-1),(m))+3((n-2),(m))+....+(n-m+1)((m),(m))

If n is a positive integer, prove that |I m(z^n)|lt=n|Im(z)||z|^(n-1.)

Prove that tan^(-1)((m)/(n))-tan^(-1)((m-n)/(m+n))=(pi)/(4).

If x and y are positive real numbers and m, n are any positive integers, then Prove that (x^n y^m)/((1+x^(2n))(1+y^(2m))) lt =1/4

If m , n are positive integers and m+nsqrt(2)=sqrt(41+24sqrt(2)) , then (m+n) is equal to

If m=""^(n)C_(2),"then """^(m)C_(2)=

If 2 cos alpha = x + (1)/(x) and 2 cos beta = y + (1)/(y) , show that x^(m) y^(n) + (1)/(x^(m)y^(n)) = 2 cos (m alpha + n beta)

If 2 cos alpha = x + (1)/(x) and 2 cos beta = y + (1)/(y) , show that (x^(m))/(y^(n))- (y^(n))/(x^(m))= 2i sin (m alpha - n beta)

If sum of m terms is n and sum of n terms is m, then show that the sum of (m + n) terms is -(m + n).