Home
Class 12
MATHS
Prove that (3 !)/(2(n + 3)) = sum(r=0)^(...

Prove that `(3 !)/(2(n + 3)) = sum_(r=0)^(n) (-1)^(r ) ((""^(r )C_(r ))/(""^(r + 3)C_(r )))`

Text Solution

Verified by Experts

`sum_(r=0)^(n) (-1) (""^(n)C_(r))/(""^(r+3)C_(r))`
`= sum_(r=0)^(n) (-1)^(r)(n!.3!)/((n-r)!(r+3))=3!sum_(r=0)^(n) (-1)^(r)(n!)/((n-r)!(r+3)!)`
`= (3!)/((n+1)(n+2)(n+3)).sum_(r=0)^(n) ((-1)^(r).(n+3)!)/((n-r)!(r+3)!)`
`=(3!)/((n+1)(n+2)(n+3)) =.sum_(r=0)^(n) (-1)^(r).""^(n+3)C_(r+3)`
`= (3!(-1)^(3))/((n+1)(n+2)(n+3))sum_(s=0)^(n) (-1)^(s).""^(n+3)C_(3)`
`=(-3!)/((n+1)(n+2)(n+3))(sum_(s=0)^(n+3) (-1)^(s).""^(n+3)C_(s))_(""^(n+3)C_(0)+""^(n+3)C_(1) -""^(n+3)C_(2))`
`=(-3!)/((n+1)(n+2)(n+3)){0-1+(n+3)-((n+3)(n+2))/(2!)}`
`=(-3!)/((n+1)(n+2)(n+3)).((n+2)(2-n-3))/(2) = (3!)/(2(n+3))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (3!)/(2(n+3))=sum_(r=0)^n(-1)^r((^n C_r)/(^(r+3)C_r))

The value of sum_(r=1)^(n)(-1)^(r-1)((r )/(r+1))*^(n)C_(r ) is

The value of sum_(r=0)^(3) ""^(8)C_(r)(""^(5)C_(r+1)-""^(4)C_(r)) is "_____" .

Prove that (r_(1) -r)/(a) + (r_(2) -r)/(b) = (c)/(r_(3))

The value of sum_(r=0)^(10) (-1)^(r).4^(10-r)""^(30)C_(r)""^(30-r)C_(10-r) is equal to

The value of sum_(r=0)^(3n-1)(-1)^r 6nC_(2r+1)3^r is

Prove that underset(r = 0) overset (n)(sum) 3^(r) ""^(n)C_(r) = 4^(n)

Prove that sum_(r=0)^(2n)r(.^(2n)C_r)^2=n^(4n)C_(2n) .

Find the sum sum_(r=0)^n^(n+r)C_r .