Home
Class 12
MATHS
If n is a positive integer and (1 + x ...

If n is a positive integer and
`(1 + x + x^(2))^(n) = a_(0) + a_(1) x + …. + a_(2 n) x^(2 n)`.
Then, show that, `a_(0)^(2) - a_(1)^(2) + ….a_(2n)^(2) = a_(n)`.

Text Solution

Verified by Experts

`(1 + x + x^(2))^(n) = a_(0) + a_(1)x + ...+ a_(2n)x^(2n) …(i)`
Replacing x by `-1//x` , we get
`(1- (1)/( x )+(1)/ x^(2))^(n) = a_(0) - (a_(1))/(x)+(a_(2))/(x^(2))+(a_(3))/(x^(3)) + ...+ (a_(2n))/(x^(2n)) ….(ii)`
Now , `a_(0)^(2) - a_(1)^(2) + a_(2)^(2) - a_(3)^(2) +...a_(2n)^(2) = ` , coefficient of the
term independent of x in
` [ a_(0) + a_(1)x + a_(2) x^(2) +...+ a_(2n)x^(2n)] xx[a_(0) - (a_(1))/(x) + (a_(2))/(x^(2))- ... + (a_(2n))/(x^(2n))]`
= Coefficient of the term independent of x in
` (1 + x + x^(2))^(n) (1 - (1)/(x) + (1)/(x^(2)))^(n)`
Now , RHS = ` (1 + x + x^(2))^(n) (1 - (1)/(x) + (1)/(x^(2)))^(n)`
`((1 + x + x^(2))^(n) (x^(2) - x + 1 )^(n))/(x^(2n))=([(x^(2) + 1)^(2)- x ^(2)]^(n))/(x^(2n))`
`((1 + 2x^(2) + x^(4) - x ^(2))^(n))/(x^(2n)) = (1 + x^(2) +x^(4))^(n)/(x^(2n))`
Thus , ` a_(0)^(2) - a_(1)^(2) + a_(2)^(2) - a_(3)^(2) +...+ a_(2n)^(2)`
= Coefficient of the term independent of x in
` (1)/(x^(2n)) (1 + x^(2) + x^(4))^(n)`
= Coefficient of `x^(2n) ` "in" `(1 + x ^(2) + x^(4))^(n)`
= Cofficient of ` t^(n)` "in" ` (1 + t + t^(2))^(n) = a_(n)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If (1 + x - 3x^(2))^(10) = a_(0) + a_(1)x + a_(2)x^(2) + ....... + a_(20)x^(20) , then a_(2) + a_(4) + a_(6) + ……. + a_(20) =

If (1+x+x^(2))^(20) = a_(0) + a_(1)x^(2) "……" + a_(40)x^(40) , then following questions. The value of a_(0)^(2) - a_(1)^(2) + a_(2)^(2)- "……" - a_(19)^(2) is

If (2x^(2) - x - 1)^(5) = a_(0) + a_(1)x + a_(2)x^(2) + ....... + a_(10)x^(10) then, a_(2) + a_(4) + a_(6) + a_(8) + a_(10) =

If (x^(2)+x+1)/(1-x) = a_(0) + a_(1)x+a_(2)x^(2)+"…." , the b sum_(r=1)^(50) a_(r) equal to

If (1+x+x^(2))^(20) = a_(0) + a_(1)x^(2) "……" + a_(40)x^(40) , then following questions. The value of a_(0) + a_(1) + a_(2) + "……" + a_(19) is

If (1+x^(2))^(2)(1+x)^(n) =a_(0) + a_(1)x + a_(2)x^(2) + …+ x^(n+4) and if a_(0), a_(1), a_(2) are in A.P., then n is:

If (1+x+x^(2))^(20) = a_(0) + a_(1)x^(2) "……" + a_(40)x^(40) , then following questions. The value of a_(0) + 3a_(1) + 5a_(2) + "……" + 81a_(40) is

If (1+px+x^(2))^(n)=1+a_(1)x+a_(2)x^(2)+…+a_(2n)x^(2n) . The value of a_(1)+3a_(2)+5a_(3)+7a_(4)+….(4n-1)a_(2n) when p=-3 and n in even is

If the expansion in power of x of the function (1)/(( 1 - ax)(1 - bx)) is a_(0) + a_(1) x + a_(2) x^(2) + a_(3) a^(3) + …, then a_(n) is

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of