Home
Class 12
MATHS
Prove that C0-2^2C1+3^2C2-4^2C3+...+(-1)...

Prove that `C_0-2^2C_1+3^2C_2-4^2C_3+...+(-1)^n(n+1)^2xxC_n=0w h e r eC_r=^n C_r` .

Text Solution

Verified by Experts

`C_(0) - 2^(2) C_(1) + 3^(2) . C_(2) - … + (-1)^(n) (n+1)^(2) . C_(n)`
`= sum_(r = 0 )^(n) *(-1)^(r) (r + 1)^(2)""^(n)C_(r) = sum_(r= 0) ^(n) (-1)^(r)(r^(2) + 2r + 1 ) ""^(n)C_(r)`
`= sum_(r = 0 )^(n) *(-1)^(r)r^(2). ""^(n)C_(r) +2 sum_(r= 0) ^(n) (-1)^(r)r. ""^(n)C_(r) + sum_(r=0)^(n) (-1)^(r). ""^(n)C_(r)`
`= sum_(r = 0 )^(n) *(-1)^(r)r(r - 1) ""^(n)C_(r) +3 sum_(r= 0) ^(n) (-1)^(r)r. ""^(n)C_(r) + sum_(r=0)^(n) (-1)^(r). ""^(n)C_(r)`
`= sum_(r = 0 )^(n) *(-1)^(r)n(n - 1) ""^(n - 2)C_(r-2) +3 sum_(r= 0) ^(n) (-1)^(r)n. ""^(n-1)C_(r-1) + sum_(r=0)^(n) (-1)^(r). ""^(n)C_(r)`
` = n(n- 1) {""^(n-2)C_(0) - ""^(n - 2)C_(0) - ""^(n-2)C_(1) + ""^(n-2)C_(2^(-))...+(-1)^(n) ""^(n-2)C_(n-2)}`
` = + 3n{-""^(n-1)C_(0)+ ""^(n - 1)C_(1) - ""^(n-1)C_(2)+ ...+(-1)^(n) ""^(n-1)C_(n-1)} + {""^(n)C_(0) -""^(n)C_(1) + ""^(n)C_(2) +...+ (-1)^(n)""^(n)C_(n)}
`= n(n-1). 0 + 3n .0 - AA n gt 2 = 0 , AA n gt 2 ` .
Promotional Banner

Similar Questions

Explore conceptually related problems

If n >2, then prove that C_1(a-1)-C_2xx(a-2)++(-1)^(n-1)C_n(a-n)=a ,w h e r eC_r=^n C_rdot

Find the sum 1xx2xxC_1+2xx3C_2+ +n(n+1)C_n ,w h e r eC_r=^n C_rdot

Given that C_1+2C_2x+3C_3x^2++2nC_(2n)x^(2n-1)=2n(1+x)^(2n-1), w h e r eC_r=(2n)!//[r !(2n-r)!]; r=0,1,2, ,2n , then prove that C1 2-2C2 2+3C3 2--2n C2n2=(-1)^nn C_ndot

Find the sum 1C_0+2C_1+3C_2++(n+1)C_n ,w h e r eC_r=^n C_rdot

Prove that (r+1)^n C_r-r^n C_r+(r-1)^n C_2-^n C_3++(-1)^r^n C_r = (-1)^r^(n-2)C_rdot

Prove that "^n C_0^(2n)C_n-^n C_1^(2n-1)C_n+^n C_2xx^(2n-2)C_n++(-1)^n^n C_n^n C_n=1.

Prove that .^(n)C_(0) - ^(n)C_(1) + .^(n)C_(2)- ^(n)C_(3) + "…" + (-1)^(r) + .^(n)C_(r) + "…" = (-1)^(r ) xx .^(n-1)C_(r ) .

Show that 4C_0 +4C_1 +4C_2 +.....+4C_n>(2^(4n))/(n^3),w h e r e^n C_r=n !//[r !(n-r)!]dot

Prove that ^n C_0 ^(2n)C_n- ^n C_1 ^(2n-2)C_n+ ^n C_2^(2n-4)C_n-=2^ndot