Home
Class 12
MATHS
Prove that C(1)^(2) - 2. C(2)^(2) + 3. C...

Prove that `C_(1)^(2) - 2. C_(2)^(2) + 3. C_(3)^(2) - …. -2n . C_(2n)^(2) = (-1)^(n). C_(n)`

Text Solution

Verified by Experts

We know that , `(1 + x )^(2n) = C_(0) + C_(1)x + C_(2) x^(2) + …+ C_(2n) x^(2n)`
On differntiating both sides w.r.t.x, we get
` 2n (1 + x)^(2n-1) = C_(1) + 2.C_(2) x + 3. C_(3) x^(3) + …+ 2nC_(2n x^(2n-1) ` …(i)
and ` (1 - (1)/(x))^(2n) = C_(0) - C_(1).(1)/(x) + C_(2) .(1)/(x^(2)) C_(3) . (1)/(x^(3)) + ...+ C_(2n). (1)/(x^(2n))` ...(ii)
On multiplying Eqs. (i) and (ii) , we get
` 2n (1 + x)^(2n-1) (1 - (1)/(x))^(2n)`
= `[C_(1) + 2*C_(2)x + 3. C_(3) x^(2) +...+ 2n*C_(2n)x^(2n-1)] xx[C_(0) - C_(1) ((1)/(x)) + C_(2) ((1)/(x^(3))) -...+C_(2n) ((1)/(x^(2n)))]`
Coefficent of ` ((1)/(x))` on the LHS
= Coefficient of ` (1)/(x) `in 2n `((1)/(x^(2n)))(1 + x)^(2n - 1) (x - 1)^(2n)`
Coefficient if ` x^(2n - 1)` in 2n ` (1 - x^(2))^(2-1) (1 - x)`
` 2n (-1)^(n-1) . (2n -1) C_(n-1) (-1)`
` = (-1)^(n) (2n) ((2n -1)!)/((n-1)!n!) = (-1)^(n)n((2n)!)/((n!^(2)))n`
` = - (-1)^(n)n . C_(n)` ...(iii)
Again , the coefficient of `((1)/(x))` on the RHS
` = - (C_(1)^(2) - 2 *C_(2)^(2) + 3*C_(3)^(2)-...-2nC_(2n)^(2))` ...(iv)
From Eqs. (iii) and (iv),
`- C_(1)^(2) - 2 *C_(2)^(2) + 3*C_(3)^(2)-...-2nC_(2n)^(2) = (-1)^(n) n.C_(n)`.
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that C_(0)^(2) + C_(1)^(2) + C_(2)^(2) +…+C_(n)^(2) = (2n!)/(n!)^(2)

Prove that .^(n)C_(1) + 2 .^(n)C_(2) + 3 .^(n)C_(3) + "…." + n . ^(n)C_(n) = n 2^(n-1) .

If C_(r) = .^(n)C_(r) then prove that (C_(0) + C_(1)) (C_(1) + C_(2)) "….." (C_(n-1) + C_(n)) = (C_(1)C_(2)"…."C_(n-1)C_(n))(n+1)^(n)//n!

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .

Prove that .^(n)C_(0) - ^(n)C_(1) + .^(n)C_(2)- ^(n)C_(3) + "…" + (-1)^(r) + .^(n)C_(r) + "…" = (-1)^(r ) xx .^(n-1)C_(r ) .

Prove that (1^(2))/(3).^(n)C_(1)+(1^(2) + 2^(2))/(7).^(n)C_(2)+(1^(2)+2^(2)+3^(2))/(7).^(n)C_(3)+"...." +(1^(2)+2^(3)+"....."+n^(2))/(2n+1).^(n)C_(n) = (n(n+3))/(6)2^(n-2) .

Prove that sum_(r=0)^(2n)r(.^(2n)C_r)^2=n^(4n)C_(2n) .

C_(1) + 4.C_(2) + 7.C_(3) +......+(3n - 2).C_(n) =

Prove that .^(n)C_(0) +5 xx .^(n)C_(1) + 9 xx .^(n)C_(2) + "…." + (4n+1) xx .^(n)C_(n) = (2n+1) 2^(n) .