Home
Class 12
MATHS
Let P Qa n dR S be tangent at the extrem...

Let `P Qa n dR S` be tangent at the extremities of the diameter `P R` of a circle of radius `rdot` If `P Sa n dR Q` intersect at a point `X` on the circumference of the circle, then prove that `2r=sqrt(P Q x R S)` .

A

`sqrt(PQ.RS)`

B

`(PQ+RS)/(2)`

C

`(2PQ.RS)/(PQ+RS)`

D

`sqrt(PQ^(2)+RS^(2))/(2)`

Text Solution

Verified by Experts

The correct Answer is:
A

From figure, it is clear that `Delta PRQ and Delta RSP` and similar.

`therefore(PR)/(RS)=(PQ)/(RP)`
`rArrPR^(2)=PQ*RS`
`rArrPR=sqrt(PQ*RS)`
`rArr 2r=sqrt(PQ*RS)`
Promotional Banner