Home
Class 12
CHEMISTRY
The average life of a radioactive elemen...

The average life of a radioactive element is 7.2 min. Calculate the time travel (in min) between the stages of 33.33% and 66.66% decay

Text Solution

Verified by Experts

The correct Answer is:
5
Promotional Banner

Topper's Solved these Questions

  • CHEMICAL KINETIC & NUCLEAR CHEMISTRY

    NARENDRA AWASTHI|Exercise Level 1 (Q.3 To Q.32)|1 Videos
  • CHEMICAL KINETIC & NUCLEAR CHEMISTRY

    NARENDRA AWASTHI|Exercise Level 1 (Q.33 To Q.62)|2 Videos
  • SURFACE CHEMISTRY

    NARENDRA AWASTHI|Exercise Level -2|1 Videos

Similar Questions

Explore conceptually related problems

The half-life of a radioactive element is 100 minutes . The time interval between the stage to 50% and 87.5% decay will be: a) 100 min b) 50 min c) 200 min d) 25 min

Radioactive element A are being produced at a constant rate alpha . The element has a decay constant lambda . At time t=0, there are N_0 nuclei of the element. If alpha=2N_0lambda , calculate the number of nuclei of A after one half life of A and also limiting value of N as t rarr infty .

Radioactive disintegration is a first order reaction and its rate depends only upon the nature of nucleus and does not depend upon external factors like temperature and pressure. The rate of radioactive disintegration (Activity) is represented as -(dN)/(dt)=lambdaN Where lambda= decay constant, N= number of nuclei at time t, N_(0) =intial no. of nuclei. The above equation after integration can be represented as lambda=(2.303)/(t)log((N_(0))/(N)) Calculate the half-life period of a radioactive element which remains only 1//16 of its original amount in 4740 years: a) 1185 years b) 2370 years c) 52.5 years d) none of these

A cobalt-60 source having a half-life of 5.27 years is calibrated and found to have an activity of 3.50 xx 10^5 Bq.The uncertainty in the calibration is +- 2% .Calculate the length of time.in days, after the calibration has been made, for the stated activity of 3.50 xx 10^5 Bq to have a maximum possible error of 10%.

A first order reaction takes 40 min for 30% completion. Calculate t_(1/2) .