Home
Class 11
CHEMISTRY
Werner Heisenberg considered the limits ...

Werner Heisenberg considered the limits of how precisely we can measure the properties of an electron or other microscopic particle. He determined that there is a fundamental limit to how closely we can measure both position and momentum. The more accurately we measure the momentum of a particle, the less accurately we can determine its position. The converse also true. This is summed up in what we now call the Heisenberg uncertainty principle.
The equation si `deltax.delta (mv)ge(h)/(4pi)`
The uncertainty in the position or in the momentum of a marcroscopic object like a baseball is too small to observe. However, the mass of microscopic object such as an electon is small enough for the uncertainty to be relatively large and significant.
What would be the minimum uncetaintty in de-Broglie wavelength of a moving electron accelerated by potential difference of 6 volt and whose uncetainty in position is `(7)/(22)` nm?

A

`6.25 Å`

B

`6 Å`

C

`0.625 Å`

D

`0.3125 Å`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • ATOMIC STUCTURE

    NARENDRA AWASTHI|Exercise Level- 1|1 Videos
  • ATOMIC STUCTURE

    NARENDRA AWASTHI|Exercise level 2|1 Videos
  • CHEMICAL EQUILIBRIUM

    NARENDRA AWASTHI|Exercise Level 2|1 Videos

Similar Questions

Explore conceptually related problems

Werner Heisenberg considered the limits of how precisely we can measure the properties of an electron or other microscopic particle. He determined that there is a fundamental limit to how closely we can measure both position and momentum. The more accurately we measure the momentum of a particle, the less accurately we can determine its position. The converse also true. This is summed up in what we now call the Heisenberg uncertainty principle. The equation si deltax.delta (mv)ge(h)/(4pi) The uncertainty in the position or in the momentum of a marcroscopic object like a baseball is too small to observe. However, the mass of microscopic object such as an electon is small enough for the uncertainty to be relatively large and significant. If the uncertainties in position and momentum are equal, the uncertainty in the velocity is :

Werner Heisenberg considered the limits of how precisely we can measure the properties of an electron or other microscopic particle. He determined that there is a fundamental limit to how closely we can measure both position and momentum. The more accurately we measure the momentum of a particle, the less accurately we can determine its position. The converse also true. This is summed up in what we now call the Heisenberg uncertainty principle. The equation si deltax.delta (mv)ge(h)/(4pi) The uncertainty in the position or in the momentum of a marcroscopic object like a baseball is too small to observe. However, the mass of microscopic object such as an electon is small enough for the uncertainty to be relatively large and significant. If the uncertainty in velocity and position is same, then the uncertainty in momentum will be :

The average molecular mass of colloidal particles can be accurately determined by

How can we conserve water ?

How can we reduce the excess use of plastics ?