Home
Class 11
MATHS
If A^(2)-A+I=0 then find A^(-1) .In term...

If `A^(2)-A+I=0` then find `A^(-1)` .In terms of `A` and `I`

Promotional Banner

Similar Questions

Explore conceptually related problems

A=[[1,2-3,0]] then find A^(2)+3A+5I

If A=[3112], show that A^(2)-5A+7I=0 Hence find A^(-1) .

"If A" = [{:(1, 2), (1, 3):}] , then find A^(-1) + A . (a) I (b) 2I (c) 3I (d) 4I

Reduction Formula: If I_(n)=int_(0)^((pi)/(2))sin^(n)x=(n-1)/(n)I_(n-2) and find I_(n) in terms of n for n being odd or even.

If A=[[i, 0], [0, (i)/(2)]] , then A^(-1)=

If I_(m;n)=int_(0)^((pi)/(2))sin^(m)x cos^(n)xdx then show that I_(m;n)=(m-1)/(m+n)I_(m-2;n) and find I_(m;n) in terms of different combinations of m and n.

If A=[{:(2,0,1),(2,1,3),(1,-1,0):}] . find A^(2)-5A+6I and hence , find a matrix X such that A^(2)-5A+6I+X=O .

If A=[(0,2),(x,-1)] and A(A^3+3I)=2I then find value of x

.Find: (i) 0.4-:2