Home
Class 11
MATHS
The value of lim(n to oo)(3^n+5^n+7^n)^(...

The value of `lim_(n to oo)(3^n+5^n+7^n)^(1/n)` equals to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n to oo) (3^(n)+4^(n))^(1//n) is equal to

lim_(n rarr oo)(3^(n)+5^(n)+7^(n))^(1/n) is equal to

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

Let a=n(a+(1)/(In(n))) and b=(n+(1)/(ln(n)))^(n). The value of lim_(n rarr oo)((a)/(b)) is equal to

lim_(n rarr oo) (4^(n)+5^(n))^(1/n) =

lim_(n rarr oo)(2^(n)+3^(n))^(1/n)

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

The value of lim_(x to oo) (1 + 2 + 3 … + n)/(n^(2)) is