Home
Class 11
MATHS
Let a function f:(2,oo)rarr[0,oo)"define...

Let a function `f:(2,oo)rarr[0,oo)"defined as " f(x) = (|x-3|)/(|x-2|),` then f is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let a function f:(1, oo)rarr(0, oo) be defined by f(x)=|1-(1)/(x)| . Then f is

f:(0,oo)rarr(0,oo) defined by f(x)=x^(2) is

f:(-oo,oo)rarr(-oo,oo) defined by f(x)=|x| is

The function f : [0,oo)to[0,oo) defined by f(x)=(2x)/(1+2x) is

f:(-oo,oo)rarr(-oo,oo) defined by f(x)=x^(3)

If f:[1,oo)rarr[1,oo) is defined as f(x)=3^(x(x-2)) then f^(-1)(x) is equal to

If f : [0, oo) rarr [0, oo) and f(x) = (x^(2))/(1+x^(4)) , then f is

The function f : (0, oo) rarr [0, oo), f(x) = (x)/(1+x) is

If the function f:[1,oo)to[1,oo) is defined by f(x)=2^(x(x-1)) then f^(-1) is

Consider the function f : R rarr(0,oo) defined by f(x)=2^(x)+2^(|x|) The number of solutions of f(x)=2x+3 is