Home
Class 11
MATHS
The value of lim(xrarroo)(e^(x+1)log(x^(...

The value of `lim_(xrarroo)(e^(x+1)log(x^(3)e^(-x)+1))/(sin^(3)(2x))` is equal to
(Use e = 2.7)

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(xrarroo)[(e^(2))/((1+(2)/(x))^(x))]^((x)/(2)) is equal to

The value of lim_(xrarroo) (e^(sqrt(x^(4)+))-e^((x^(2)+1))) is

The value of lim_(x rarr a)(log(x-a))/(log(e^(x)-e^(a))) is

lim_(x rarr0)(e^(x)+log(1+x)-(1-x)^(-2))/(x^(2))

The value of lim_(xrarr0)((e^(x)-x-1)(x-sinx)ln(1+x))/(x^(6)) is equal to

The value of lim_(xrarr3) ((x^(3)+27)log_(e)(x-2))/(x^(2)-9) is

Evaluate: lim_(x rarr2)(sin(e^(x-2)-1))/(log(x-1))

The value of lim_(xrarr0) ((1+2x)/(1+3x))^((1)/(x^(2))).e^((1)/(e^(x))) is

The value of lim_(x rarr0)((e^(1/x^(2))-1)/(e^(1/x^(2)+1))) is :

lim_(xrarroo) [x-log_(e)((e^(x)+e^(-x))/(2))]=