Home
Class 11
MATHS
If x^y= y^x , prove that (dy)/(dx)=((y/x...

If `x^y= y^x` , prove that `(dy)/(dx)=((y/x-logy))/((x/y-logx))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^(y)=y^(x) , prove that (dy)/(dx)=((y)/(x)-log y)/((x)/(y)-log x)

If x^(y)y^(x),=1, prove that (dy)/(dx),=-(y(y+x log y))/(x(y log x+x))

If x^(y).y^(x)=1, prove that (dy)/(dx)=-(y(y+x log y))/(x(y log x+x))

If x^(y)=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2)).

If ye^(y)=x, prove that,(dy)/(dx)=(y)/(x(1+y))

If y,=x sin y, prove that (dy)/(dx),=(y)/(x(1-x cos y))

If x^(y)=e^(x-y) then prove that (dy)/(dx)=(logx)/((1+logx)^(2))

If x = e^(x//y) , then prove that (dy)/(dx) = (x-y)/(xlogx) .

x(dy)/(dx)=y(logy-logx+1)