Home
Class 12
MATHS
A=[(2,0,-1),(5,1,0),(0,1,3)]A^-1=?...

`A=[(2,0,-1),(5,1,0),(0,1,3)]A^-1=?`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the inverse of the following, if it exists, using elementary row (column) transformations : [(2,0,-1),(5,1,0),(0,1,3)]

Find ,A^2-5A+6l, if A = [(2,0,1),(2,1,3),(1,-1,0)] .

If A={:[(3,2,7),(1,1,4),(-1,-1,0)]:},B={:[(1,0,3),(2,1,0),(0,-1,-3)]:}andC{:[(1,0,0),(0,1,0),(0,0,1)]:} , then find 2A+3B-7C.

let P_(1)=[(1,0,0),(0,1,0),(0,0,1)],P_(2)=[(1,0,0),(0,0,1),(0,1,0)],P_(3)=[(0,1,0),(1,0,0),(0,0,1)],P_(4)=[(0,1,0),(0,0,1),(1,0,0)],P_(5)=[(0,0,1),(1,0,0),(0,1,0)],P_(6)=[(0,0,1),(0,1,0),(1,0,0)] and X=sum_(k=1)^(6) P_(k)[(2,1,3),(1,0,2),(3,2,1)]P_(k)^(T) Where P_(k)^(T) is transpose of matrix P_(k) . Then which of the following options is/are correct?

If A=[(2,0,1),(2,1,3),(1,-1,0)] , then find (A^(2)-5A)

Let a be a 3xx3 matric such that [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),(1,0,0),(0,1,0)] , then find A^(-1) .

(i) Show that the matrix A=[(1,-1,5),(-1,2,1),(5,1,3)] is a symmetric matrix. Show that the matrix A=[(0,1,-1),(-1,0,1),(1,-1,0)] is a skew symmetric matrix