Home
Class 14
MATHS
The maximum value of sin x + cos x is eq...

The maximum value of `sin x + cos x` is equals to ?

A

- sqrt 2

B

sqrt 2

C

2

D

sqrt 3

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of \( \sin x + \cos x \), we can follow these steps: ### Step 1: Define the function Let \( y = \sin x + \cos x \). ### Step 2: Differentiate the function We need to find the derivative of \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{d}{dx}(\sin x) + \frac{d}{dx}(\cos x) = \cos x - \sin x \] ### Step 3: Set the derivative to zero To find the critical points, we set the derivative equal to zero: \[ \cos x - \sin x = 0 \] ### Step 4: Solve for \( x \) Rearranging gives us: \[ \cos x = \sin x \] The angles where sine and cosine are equal occur at: \[ x = \frac{\pi}{4} + n\pi \quad (n \in \mathbb{Z}) \] For the principal value, we take \( x = \frac{\pi}{4} \). ### Step 5: Calculate the maximum value Now we substitute \( x = \frac{\pi}{4} \) back into the original function: \[ y = \sin\left(\frac{\pi}{4}\right) + \cos\left(\frac{\pi}{4}\right) \] Since \( \sin\left(\frac{\pi}{4}\right) = \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \), we have: \[ y = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}} \] ### Step 6: Simplify the result We can simplify \( \frac{2}{\sqrt{2}} \): \[ \frac{2}{\sqrt{2}} = \frac{2 \cdot \sqrt{2}}{2} = \sqrt{2} \] ### Conclusion Thus, the maximum value of \( \sin x + \cos x \) is: \[ \sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

  • SIMPLIFICATION

    RS AGGARWAL|Exercise question|15 Videos
  • SIMPLE INTEREST

    RS AGGARWAL|Exercise All Questions|124 Videos
  • SQUARE ROOTS AND CUBE ROOTS

    RS AGGARWAL|Exercise All Questions|219 Videos

Similar Questions

Explore conceptually related problems

The maximum value of 8sin x+6cos x=

The maximum value of sin(cos x) is equal to

The value of 2 sin 3x cos 2x is equal to

Maximum value of cosx (sinx +cos x) is equal to :

The maximum value of f(x)=a sin x +b cos x is

The maximum value of sin^(2)x cos^(3)x is

The maximum value of sin^(4)x+cos^(4)x is

The maximum value of (sin x)^((sin x)) is