Home
Class 11
MATHS
If A + B + C = pi, prove that cos A + co...

If A + B + C = `pi`, prove that cos A + cos B + cos C= 1 + 4 sin(A/2) sin(B/2) sin(C/2)

Promotional Banner

Similar Questions

Explore conceptually related problems

If A + B + C = pi , prove that sin 2A + sin 2B + sin 2C= 4 sin A sin B sin C

If A +B = 90 , prove that (cos A + cos B)/(sin A+ sinB)=1 .

If A + B + C= pi , prove that sin 2A + sin 2B -sin 2C =4cos A cos B sin C

If A +B = 90 , prove that cos A = sqrt (cos A/sin B - sin A cos B) .

if A + B +C= pi/2 ,prove that cos(A - B - C)+ cos (B-C- A) + cos (C- A - B)= 4 cos A cos B cos C

If A + B + C = 2S, prove that sin (S- A) sin (S - B) +sin S sin (S-C) = sin A sin B

If A + B + C = pi , prove that sin(A/2)+sin(B/2)+sin(C/2)=1+4sin((pi-A)/4)sin((pi-B)/4)sin((pi-C)/4)

If A +B = 90 , prove that (sin A- sin B)^2 = 1-2 sin A cos A .

If A=60⁰ and B=30⁰ , verify that cos (A-B)=cos A cos B+sin A sin B

Prove that (sin A+sin B)/(cos A+cos B)=tan((A+B)/2)