Home
Class 11
MATHS
If A + B + C = pi, prove that sin 2A + s...

If A + B + C = `pi`, prove that sin 2A + sin 2B + sin 2C= 4 sin A sin B sin C

Promotional Banner

Similar Questions

Explore conceptually related problems

If A + B + C= pi , prove that sin 2A + sin 2B -sin 2C =4cos A cos B sin C

If A + B + C = pi , prove that cos A + cos B + cos C= 1 + 4 sin(A/2) sin(B/2) sin(C/2)

If A + B + C = 2S, prove that sin (S- A) sin (S - B) +sin S sin (S-C) = sin A sin B

If A +B = 90 , prove that (sin A- sin B)^2 = 1-2 sin A cos A .

If A + B + C = pi , prove that sin(A/2)+sin(B/2)+sin(C/2)=1+4sin((pi-A)/4)sin((pi-B)/4)sin((pi-C)/4)

If A +B = 90 , prove that (cos A + cos B)/(sin A+ sinB)=1 .

If A +B = 90 , prove that cos A = sqrt (cos A/sin B - sin A cos B) .

Prove that sin (A - 120^@) + sin A + sin (A+ 120^@) = 0

If ABCD be a cyclic quadrilateral,-prove that sin A+ sin B -sin C -sin D = 0

If A +B = 90 , prove that 1+ tan A/tan B + sin^2 A+ sin^2 B = 1+ sec^2 A .