Home
Class 11
MATHS
if tanalpha,tanbetaare the roots of x^2+...

if `tanalpha`,`tanbeta`are the roots of `x^2+px+q=0`,show that `sin^2(alpha+beta)+p sin(alpha+beta)cos(alpha+beta)+q cos^2(alpha+beta)=q`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are the zeroes of 2x^2+5x-9 ,then the value of alpha*beta is

If alpha,beta are the zeroes of f(x)=2x^2+6x-6 ,then a) alpha+beta+alpha beta=0 b) alpha+beta=alpha beta c) alpha+betagtalpha beta d) alpha+betaltalpha beta

Prove that (cos alpha-cos beta)^2+(sin alpha-sin beta)^2=4sin^2((alpha-beta)/2)

Find cot^2 alpha- cos^2 alpha . .

If alpha and beta are roots of x^2 - 6x + a = 0 and 3alpha + 2beta = 20 , find the value of a.

If tan^2alpha = 1 + tan^2beta ,then prove that cos^2 beta = cot^2alpha

If alpha,beta are the zeroes of polynomial f(x)=x^2-p(x+1)-c ,then (alpha+1)(beta+1) =

Prove that sin alpha+sin(alpha+2pi/3)+sin(alpha+4pi/3)=0

if xcosalpha+ysinalpha=k=xcosbeta+ysinbeta ,show that x/(cos((alpha+beta)/2))=y/(sin((alpha+beta)/2))=k/(cos((alpha-beta)/2))

If alpha and beta are the zeroes of the polynomial ax^2 + bx+ c , find the values of alpha/beta + beta/alpha