Home
Class 11
MATHS
Prove that cos^2(pi/4-B)-sin^2(pi/4-A)=...

Prove that `cos^2(pi/4-B)-sin^2(pi/4-A)=sin(A+B)cos(A-B)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that cos^2(pi/4-theta)-sin^2(pi/4-theta)=sin 2theta

Prove that sin^2(pi/8+A/2)-sin^2(pi/8-A/2)=1/sqrt(2) sin A .

Prove that cos (A+B)+sin (A-B)=2sin (A+pi/4)cos(B+pi/4)

Prove that. cos(pi/3)cos(pi/6)+sin(pi/3)sin(pi/6)=cos(pi/6)

Prove that sin^2(pi/18)+sin^2(pi/9)+sin^2(7pi/18)+sin^2(4pi/9)=2

Prove any of the following: sin^2(pi/4)+sin^2(3pi/4)+sin^2(5pi/4)+sin^2(7pi/4)=2

In a triangle ABC, prove that (a^2sin(B-C))/sinA+(b^2sin(C-A))/sinB+(c^2sin(A-B))/sinC=0

Evaluate cos (2pi/3)cos (pi/4)-sin(2pi/3)sin(pi/4)

int_(-pi//4)^(pi//4) sin^(2) x dx

Prove any of the following sin^2(pi/8)+sin^2(3pi/8)+sin^2(5pi/8)+sin^2(7pi/8)=2