Home
Class 11
MATHS
If A + B + C = pi, show that cot A cot B...

If A + B + C = `pi`, show that cot A cot B + cot B cot C + cot C cot A = 1

Promotional Banner

Similar Questions

Explore conceptually related problems

If A + B + C= pi and cos A = cos B cos C, show that tan A =tan B + tan C and cot B cot C=1/2.

Prove that cot 16^@ cot 44^@ + cot 44^@ cot 76^@ -cot 76^@cot 16^@ = 3

If A + B + C= 180^@ , prove that (cot A+cotB)/(tanA+tanB)+(cotB+cotC)/(tanB+tanC)+(cotC+cotA)/(tanC+tanA)=1

In a triangle ABC, prove that (b^2 - c^2) cot A + (c^2 -a^2) cot B+ (a^2-b^2) cot C = 0

In a ∆ ABC prove that tan( (A+B)/2) = cot( C/2) .

If tan A -tan B = x and cot B - cot A = y, prove that cot(A-B)=1/x+1/y

In a triangle ABC, cot A, cot B, cot C are in A.P. Prove that a^2 , b^2 , c^2 are in A.P.

Show that (cos A)/(1-tan A)+(sin A)/(1-cot A)=sin A +cos A

In /_\ABC ,3a=b+c,prove that cot(B/2).cot(C/2)=2

In a ∆ ABC prove that sec^2 (B+C)/2 -1=cot^2 A/2 .