Home
Class 11
MATHS
If A + B + C = pi, prove that sin(A/2)+s...

If A + B + C =` pi`, prove that `sin(A/2)+sin(B/2)+sin(C/2)=1+4sin((pi-A)/4)sin((pi-B)/4)sin((pi-C)/4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A + B + C = 2S, prove that sin (S- A) sin (S - B) +sin S sin (S-C) = sin A sin B

In a ∆ ABC prove that cos ((A+B)/2) = sin (c/2) .

If A + B + C = pi , prove that sin 2A + sin 2B + sin 2C= 4 sin A sin B sin C

If A + B + C= pi , prove that sin 2A + sin 2B -sin 2C =4cos A cos B sin C

If A + B + C = pi , prove that cos A + cos B + cos C= 1 + 4 sin(A/2) sin(B/2) sin(C/2)

In a ∆ ABC prove that sin( (A+B)/2) = COS (c/2) .

Prove that cos (A+B)+sin (A-B)=2sin (A+pi/4)cos(B+pi/4)

If A +B = 90 , prove that (sin A- sin B)^2 = 1-2 sin A cos A .

Prove that sin^2(pi/18)+sin^2(pi/9)+sin^2(7pi/18)+sin^2(4pi/9)=2

Show that in a triangle ABC, asin(A/2)sin((B-C)/2)+bsin(B/2)sin((C-A)/2)+csin(C/2)sin((A-B)/2)=0