Home
Class 11
MATHS
In a triangle ABC, prove that a(sinB-sin...

In a triangle ABC, prove that a(sinB-sinC)+b(sinC-sinA)+c(sinA-sinB)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that in a triangle ABC, a^2(sin^2B-sin^2C)+b^2(sin^2C-sin^2A)+c^2(sin^2A-sin^2B)=0

In a triangle ABC, prove that (a^2sin(B-C))/sinA+(b^2sin(C-A))/sinB+(c^2sin(A-B))/sinC=0

Show that in a triangle ABC, a^3sin(B-C)+b^3sin(C-A)+c^3sin(A-B)=0

Show that in a triangle ABC, (asin(B-C))/(b^2-c^2)=(bsin(C-A))/(c^2-a^2)=(csin(A-B))/(a^2-b^2)

If A +B = 90 , prove that (cos A + cos B)/(sin A+ sinB)=1 .

In a triangle ABC, prove that (b^2 - c^2) cot A + (c^2 -a^2) cot B+ (a^2-b^2) cot C = 0

Show that in a triangle ABC, asin(A/2)sin((B-C)/2)+bsin(B/2)sin((C-A)/2)+csin(C/2)sin((A-B)/2)=0

In a ∆ ABC prove that cos ((A+B)/2) = sin (c/2) .

In a ∆ ABC prove that sin( (A+B)/2) = COS (c/2) .

In a ∆ ABC prove that tan( (A+B)/2) = cot( C/2) .