Home
Class 11
MATHS
In a triangle ABC, prove that (b^2 - c^2...

In a triangle ABC, prove that `(b^2 - c^2)` cot A + `(c^2 -a^2)` cot B+ `(a^2-b^2)` cot C = 0

Promotional Banner

Similar Questions

Explore conceptually related problems

In a ∆ ABC prove that sec^2 (B+C)/2 -1=cot^2 A/2 .

In a ∆ ABC prove that tan( (A+B)/2) = cot( C/2) .

Show that in a triangle ABC, (b^2-c^2)/(cosB+cosC)+(c^2-a^2)/(cosC+cosA)+(a^2-b^2)/(cosA+cosB)=0

In a ∆ ABC prove that cos ((A+B)/2) = sin (c/2) .

In a ∆ ABC prove that sin( (A+B)/2) = COS (c/2) .

Show that in a triangle ABC, (b^2-c^2)/a^2sin2A+(c^2-a^2)/b^2sin2B+(a^2-b^2)/c^2sin2C=0

Show that in a triangle ABC, (asin(B-C))/(b^2-c^2)=(bsin(C-A))/(c^2-a^2)=(csin(A-B))/(a^2-b^2)

In a triangle ABC, prove that (a^2sin(B-C))/sinA+(b^2sin(C-A))/sinB+(c^2sin(A-B))/sinC=0

Resolve into factors a(b^2+c^2)+b(c^2+a^2)+c(a^2+b^2) + 2abc

Prove that in a triangle ABC, bc cos A + ca cos B +ab cos C= 1/2(a^2+b^2+c^2)